File size: 13,782 Bytes
92f2071 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
#include "opencv2/opencv.hpp"
#include "opencv2/core/types.hpp"
#include <string>
#include <vector>
const std::vector<std::pair<int, int>> backend_target_pairs = {
{cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_TARGET_CPU},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16},
{cv::dnn::DNN_BACKEND_TIMVX, cv::dnn::DNN_TARGET_NPU},
{cv::dnn::DNN_BACKEND_CANN, cv::dnn::DNN_TARGET_NPU}
};
class YuNet
{
public:
YuNet(const std::string& model_path,
const cv::Size& input_size,
const float conf_threshold,
const float nms_threshold,
const int top_k,
const int backend_id,
const int target_id)
{
_detector = cv::FaceDetectorYN::create(
model_path, "", input_size, conf_threshold, nms_threshold, top_k, backend_id, target_id);
}
void setInputSize(const cv::Size& input_size)
{
_detector->setInputSize(input_size);
}
void setTopK(const int top_k)
{
_detector->setTopK(top_k);
}
cv::Mat infer(const cv::Mat& image)
{
cv::Mat result;
_detector->detect(image, result);
return result;
}
private:
cv::Ptr<cv::FaceDetectorYN> _detector;
};
class SFace
{
public:
SFace(const std::string& model_path,
const int backend_id,
const int target_id,
const int distance_type)
: _distance_type(static_cast<cv::FaceRecognizerSF::DisType>(distance_type))
{
_recognizer = cv::FaceRecognizerSF::create(model_path, "", backend_id, target_id);
}
cv::Mat extractFeatures(const cv::Mat& orig_image, const cv::Mat& face_image)
{
// Align and crop detected face from original image
cv::Mat target_aligned;
_recognizer->alignCrop(orig_image, face_image, target_aligned);
// Extract features from cropped detected face
cv::Mat target_features;
_recognizer->feature(target_aligned, target_features);
return target_features.clone();
}
std::pair<double, bool> matchFeatures(const cv::Mat& target_features, const cv::Mat& query_features)
{
const double score = _recognizer->match(target_features, query_features, _distance_type);
if (_distance_type == cv::FaceRecognizerSF::DisType::FR_COSINE)
{
return {score, score >= _threshold_cosine};
}
return {score, score <= _threshold_norml2};
}
private:
cv::Ptr<cv::FaceRecognizerSF> _recognizer;
cv::FaceRecognizerSF::DisType _distance_type;
double _threshold_cosine = 0.363;
double _threshold_norml2 = 1.128;
};
cv::Mat visualize(const cv::Mat& image,
const cv::Mat& faces,
const std::vector<std::pair<double, bool>>& matches,
const float fps = -0.1F,
const cv::Size& target_size = cv::Size(512, 512))
{
static const cv::Scalar matched_box_color{0, 255, 0};
static const cv::Scalar mismatched_box_color{0, 0, 255};
if (fps >= 0)
{
cv::Mat output_image = image.clone();
const int x1 = static_cast<int>(faces.at<float>(0, 0));
const int y1 = static_cast<int>(faces.at<float>(0, 1));
const int w = static_cast<int>(faces.at<float>(0, 2));
const int h = static_cast<int>(faces.at<float>(0, 3));
const auto match = matches.at(0);
cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
// Draw bounding box
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
// Draw match score
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
// Draw FPS
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, box_color, 2);
return output_image;
}
cv::Mat output_image = cv::Mat::zeros(target_size, CV_8UC3);
// Determine new height and width of image with aspect ratio of original image
const double ratio = std::min(static_cast<double>(target_size.height) / image.rows,
static_cast<double>(target_size.width) / image.cols);
const int new_height = static_cast<int>(image.rows * ratio);
const int new_width = static_cast<int>(image.cols * ratio);
// Resize the original image, maintaining aspect ratio
cv::Mat resize_out;
cv::resize(image, resize_out, cv::Size(new_width, new_height), cv::INTER_LINEAR);
// Determine top left corner in resized dimensions
const int top = std::max(0, target_size.height - new_height) / 2;
const int left = std::max(0, target_size.width - new_width) / 2;
// Copy resized image into target output image
const cv::Rect roi = cv::Rect(cv::Point(left, top), cv::Size(new_width, new_height));
cv::Mat out_sub_image = output_image(roi);
resize_out.copyTo(out_sub_image);
for (int i = 0; i < faces.rows; ++i)
{
const int x1 = static_cast<int>(faces.at<float>(i, 0) * ratio) + left;
const int y1 = static_cast<int>(faces.at<float>(i, 1) * ratio) + top;
const int w = static_cast<int>(faces.at<float>(i, 2) * ratio);
const int h = static_cast<int>(faces.at<float>(i, 3) * ratio);
const auto match = matches.at(i);
cv::Scalar box_color = match.second ? matched_box_color : mismatched_box_color;
// Draw bounding box
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
// Draw match score
cv::putText(output_image, cv::format("%.4f", match.first), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.30, box_color);
}
return output_image;
}
int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv,
// General options
"{help h | | Print this message}"
"{backend_target b | 0 | Set DNN backend target pair:\n"
"0: (default) OpenCV implementation + CPU,\n"
"1: CUDA + GPU (CUDA),\n"
"2: CUDA + GPU (CUDA FP16),\n"
"3: TIM-VX + NPU,\n"
"4: CANN + NPU}"
"{save s | false | Whether to save result image or not}"
"{vis v | false | Whether to visualize result image or not}"
// SFace options
"{target_face t | | Set path to input image 1 (target face)}"
"{query_face q | | Set path to input image 2 (query face), omit if using camera}"
"{model m | face_recognition_sface_2021dec.onnx | Set path to the model}"
"{distance_type d | 0 | 0 = cosine, 1 = norm_l1}"
// YuNet options
"{yunet_model | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Set path to the YuNet model}"
"{detect_threshold | 0.9 | Set the minimum confidence for the model\n"
"to identify a face. Filter out faces of\n"
"conf < conf_threshold}"
"{nms_threshold | 0.3 | Set the threshold to suppress overlapped boxes.\n"
"Suppress boxes if IoU(box1, box2) >= nms_threshold\n"
", the one of higher score is kept.}"
"{top_k | 5000 | Keep top_k bounding boxes before NMS}"
);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
// General CLI options
const int backend = parser.get<int>("backend_target");
const bool save_flag = parser.get<bool>("save");
const bool vis_flag = parser.get<bool>("vis");
const int backend_id = backend_target_pairs.at(backend).first;
const int target_id = backend_target_pairs.at(backend).second;
// YuNet CLI options
const std::string detector_model_path = parser.get<std::string>("yunet_model");
const float detect_threshold = parser.get<float>("detect_threshold");
const float nms_threshold = parser.get<float>("nms_threshold");
const int top_k = parser.get<int>("top_k");
// Use YuNet as the detector backend
auto face_detector = YuNet(
detector_model_path, cv::Size(320, 320), detect_threshold, nms_threshold, top_k, backend_id, target_id);
// SFace CLI options
const std::string target_path = parser.get<std::string>("target_face");
const std::string query_path = parser.get<std::string>("query_face");
const std::string model_path = parser.get<std::string>("model");
const int distance_type = parser.get<int>("distance_type");
auto face_recognizer = SFace(model_path, backend_id, target_id, distance_type);
if (target_path.empty())
{
CV_Error(cv::Error::StsError, "Path to target image " + target_path + " not found");
}
cv::Mat target_image = cv::imread(target_path);
// Detect single face in target image
face_detector.setInputSize(target_image.size());
face_detector.setTopK(1);
cv::Mat target_face = face_detector.infer(target_image);
// Extract features from target face
cv::Mat target_features = face_recognizer.extractFeatures(target_image, target_face.row(0));
if (!query_path.empty()) // use image
{
// Detect any faces in query image
cv::Mat query_image = cv::imread(query_path);
face_detector.setInputSize(query_image.size());
face_detector.setTopK(5000);
cv::Mat query_faces = face_detector.infer(query_image);
// Store match scores for visualization
std::vector<std::pair<double, bool>> matches;
for (int i = 0; i < query_faces.rows; ++i)
{
// Extract features from query face
cv::Mat query_features = face_recognizer.extractFeatures(query_image, query_faces.row(i));
// Measure similarity of target face to query face
const auto match = face_recognizer.matchFeatures(target_features, query_features);
matches.push_back(match);
const int x1 = static_cast<int>(query_faces.at<float>(i, 0));
const int y1 = static_cast<int>(query_faces.at<float>(i, 1));
const int w = static_cast<int>(query_faces.at<float>(i, 2));
const int h = static_cast<int>(query_faces.at<float>(i, 3));
const float conf = query_faces.at<float>(i, 14);
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f, match=%.4f\n", i, x1, y1, w, h, conf, match.first);
}
if (save_flag || vis_flag)
{
auto vis_target = visualize(target_image, target_face, {{1.0, true}});
auto vis_query = visualize(query_image, query_faces, matches);
cv::Mat output_image;
cv::hconcat(vis_target, vis_query, output_image);
if (save_flag)
{
std::cout << "Results are saved to result.jpg\n";
cv::imwrite("result.jpg", output_image);
}
if (vis_flag)
{
cv::namedWindow(query_path, cv::WINDOW_AUTOSIZE);
cv::imshow(query_path, output_image);
cv::waitKey(0);
}
}
}
else // use video capture
{
const int device_id = 0;
auto cap = cv::VideoCapture(device_id);
const int w = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH));
const int h = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT));
face_detector.setInputSize(cv::Size(w, h));
auto tick_meter = cv::TickMeter();
cv::Mat query_frame;
while (cv::waitKey(1) < 0)
{
bool has_frame = cap.read(query_frame);
if (!has_frame)
{
std::cout << "No frames grabbed! Exiting ...\n";
break;
}
tick_meter.start();
// Detect faces from webcam image
cv::Mat query_faces = face_detector.infer(query_frame);
tick_meter.stop();
// Extract features from query face
cv::Mat query_features = face_recognizer.extractFeatures(query_frame, query_faces.row(0));
// Measure similarity of target face to query face
const auto match = face_recognizer.matchFeatures(target_features, query_features);
const auto fps = static_cast<float>(tick_meter.getFPS());
auto vis_target = visualize(target_image, target_face, {{1.0, true}}, -0.1F, cv::Size(w, h));
auto vis_query = visualize(query_frame, query_faces, {match}, fps);
cv::Mat output_image;
cv::hconcat(vis_target, vis_query, output_image);
// Visualize in a new window
cv::imshow("SFace Demo", output_image);
tick_meter.reset();
}
}
return 0;
}
|