File size: 16,471 Bytes
57699b7 167c85e 57699b7 a07f7bd 57699b7 a07f7bd 57699b7 50fc340 57699b7 6f815fd 57699b7 50fc340 57699b7 6f815fd 57699b7 50fc340 6f815fd 57699b7 50fc340 57699b7 50fc340 6f815fd 57699b7 50fc340 57699b7 6f815fd 57699b7 a07f7bd 57699b7 260eb6d 57699b7 50fc340 a07f7bd 57699b7 a07f7bd 57699b7 50fc340 57699b7 50fc340 57699b7 50fc340 57699b7 50fc340 57699b7 50fc340 57699b7 50fc340 57699b7 50fc340 57699b7 50fc340 57699b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import sys
import argparse
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from mp_handpose import MPHandPose
sys.path.append('../palm_detection_mediapipe')
from mp_palmdet import MPPalmDet
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe')
parser.add_argument('--input', '-i', type=str,
help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2023feb.onnx',
help='Path to the model.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--conf_threshold', type=float, default=0.9,
help='Filter out hands of confidence < conf_threshold.')
parser.add_argument('--save', '-s', action='store_true',
help='Specify to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', action='store_true',
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
def visualize(image, hands, print_result=False):
display_screen = image.copy()
display_3d = np.zeros((400, 400, 3), np.uint8)
cv.line(display_3d, (200, 0), (200, 400), (255, 255, 255), 2)
cv.line(display_3d, (0, 200), (400, 200), (255, 255, 255), 2)
cv.putText(display_3d, 'Main View', (0, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
cv.putText(display_3d, 'Top View', (200, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
cv.putText(display_3d, 'Left View', (0, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
cv.putText(display_3d, 'Right View', (200, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
is_draw = False # ensure only one hand is drawn
def draw_lines(image, landmarks, is_draw_point=True, thickness=2):
cv.line(image, landmarks[0], landmarks[1], (255, 255, 255), thickness)
cv.line(image, landmarks[1], landmarks[2], (255, 255, 255), thickness)
cv.line(image, landmarks[2], landmarks[3], (255, 255, 255), thickness)
cv.line(image, landmarks[3], landmarks[4], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[5], (255, 255, 255), thickness)
cv.line(image, landmarks[5], landmarks[6], (255, 255, 255), thickness)
cv.line(image, landmarks[6], landmarks[7], (255, 255, 255), thickness)
cv.line(image, landmarks[7], landmarks[8], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[9], (255, 255, 255), thickness)
cv.line(image, landmarks[9], landmarks[10], (255, 255, 255), thickness)
cv.line(image, landmarks[10], landmarks[11], (255, 255, 255), thickness)
cv.line(image, landmarks[11], landmarks[12], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[13], (255, 255, 255), thickness)
cv.line(image, landmarks[13], landmarks[14], (255, 255, 255), thickness)
cv.line(image, landmarks[14], landmarks[15], (255, 255, 255), thickness)
cv.line(image, landmarks[15], landmarks[16], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[17], (255, 255, 255), thickness)
cv.line(image, landmarks[17], landmarks[18], (255, 255, 255), thickness)
cv.line(image, landmarks[18], landmarks[19], (255, 255, 255), thickness)
cv.line(image, landmarks[19], landmarks[20], (255, 255, 255), thickness)
if is_draw_point:
for p in landmarks:
cv.circle(image, p, thickness, (0, 0, 255), -1)
# used for gesture classification
gc = GestureClassification()
for idx, handpose in enumerate(hands):
conf = handpose[-1]
bbox = handpose[0:4].astype(np.int32)
handedness = handpose[-2]
if handedness <= 0.5:
handedness_text = 'Left'
else:
handedness_text = 'Right'
landmarks_screen = handpose[4:67].reshape(21, 3).astype(np.int32)
landmarks_word = handpose[67:130].reshape(21, 3)
gesture = gc.classify(landmarks_screen)
# Print results
if print_result:
print('-----------hand {}-----------'.format(idx + 1))
print('conf: {:.2f}'.format(conf))
print('handedness: {}'.format(handedness_text))
print('gesture: {}'.format(gesture))
print('hand box: {}'.format(bbox))
print('hand landmarks: ')
for l in landmarks_screen:
print('\t{}'.format(l))
print('hand world landmarks: ')
for l in landmarks_word:
print('\t{}'.format(l))
# draw box
cv.rectangle(display_screen, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)
# draw handedness
cv.putText(display_screen, '{}'.format(handedness_text), (bbox[0], bbox[1] + 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
# draw gesture
cv.putText(display_screen, '{}'.format(gesture), (bbox[0], bbox[1] + 30), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
# Draw line between each key points
landmarks_xy = landmarks_screen[:, 0:2]
draw_lines(display_screen, landmarks_xy, is_draw_point=False)
# z value is relative to WRIST
for p in landmarks_screen:
r = max(5 - p[2] // 5, 0)
r = min(r, 14)
cv.circle(display_screen, np.array([p[0], p[1]]), r, (0, 0, 255), -1)
if is_draw is False:
is_draw = True
# Main view
landmarks_xy = landmarks_word[:, [0, 1]]
landmarks_xy = (landmarks_xy * 1000 + 100).astype(np.int32)
draw_lines(display_3d, landmarks_xy, thickness=5)
# Top view
landmarks_xz = landmarks_word[:, [0, 2]]
landmarks_xz[:, 1] = -landmarks_xz[:, 1]
landmarks_xz = (landmarks_xz * 1000 + np.array([300, 100])).astype(np.int32)
draw_lines(display_3d, landmarks_xz, thickness=5)
# Left view
landmarks_yz = landmarks_word[:, [2, 1]]
landmarks_yz[:, 0] = -landmarks_yz[:, 0]
landmarks_yz = (landmarks_yz * 1000 + np.array([100, 300])).astype(np.int32)
draw_lines(display_3d, landmarks_yz, thickness=5)
# Right view
landmarks_zy = landmarks_word[:, [2, 1]]
landmarks_zy = (landmarks_zy * 1000 + np.array([300, 300])).astype(np.int32)
draw_lines(display_3d, landmarks_zy, thickness=5)
return display_screen, display_3d
class GestureClassification:
def _vector_2_angle(self, v1, v2):
uv1 = v1 / np.linalg.norm(v1)
uv2 = v2 / np.linalg.norm(v2)
angle = np.degrees(np.arccos(np.dot(uv1, uv2)))
return angle
def _hand_angle(self, hand):
angle_list = []
# thumb
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[2][0], hand[0][1] - hand[2][1]]),
np.array([hand[3][0] - hand[4][0], hand[3][1] - hand[4][1]])
)
angle_list.append(angle_)
# index
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[6][0], hand[0][1] - hand[6][1]]),
np.array([hand[7][0] - hand[8][0], hand[7][1] - hand[8][1]])
)
angle_list.append(angle_)
# middle
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[10][0], hand[0][1] - hand[10][1]]),
np.array([hand[11][0] - hand[12][0], hand[11][1] - hand[12][1]])
)
angle_list.append(angle_)
# ring
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[14][0], hand[0][1] - hand[14][1]]),
np.array([hand[15][0] - hand[16][0], hand[15][1] - hand[16][1]])
)
angle_list.append(angle_)
# pink
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[18][0], hand[0][1] - hand[18][1]]),
np.array([hand[19][0] - hand[20][0], hand[19][1] - hand[20][1]])
)
angle_list.append(angle_)
return angle_list
def _finger_status(self, lmList):
fingerList = []
originx, originy = lmList[0]
keypoint_list = [[5, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
for point in keypoint_list:
x1, y1 = lmList[point[0]]
x2, y2 = lmList[point[1]]
if np.hypot(x2 - originx, y2 - originy) > np.hypot(x1 - originx, y1 - originy):
fingerList.append(True)
else:
fingerList.append(False)
return fingerList
def _classify(self, hand):
thr_angle = 65.
thr_angle_thumb = 30.
thr_angle_s = 49.
gesture_str = "Undefined"
angle_list = self._hand_angle(hand)
thumbOpen, firstOpen, secondOpen, thirdOpen, fourthOpen = self._finger_status(hand)
# Number
if (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle) and \
not firstOpen and not secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "Zero"
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle) and \
firstOpen and not secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "One"
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle) and \
not thumbOpen and firstOpen and secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "Two"
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
angle_list[3] < thr_angle_s) and (angle_list[4] > thr_angle) and \
not thumbOpen and firstOpen and secondOpen and thirdOpen and not fourthOpen:
gesture_str = "Three"
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle) and \
firstOpen and secondOpen and thirdOpen and fourthOpen:
gesture_str = "Four"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s) and \
thumbOpen and firstOpen and secondOpen and thirdOpen and fourthOpen:
gesture_str = "Five"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s) and \
thumbOpen and not firstOpen and not secondOpen and not thirdOpen and fourthOpen:
gesture_str = "Six"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle) and (angle_list[2] > thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle_s) and \
thumbOpen and firstOpen and not secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "Seven"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle) and (angle_list[2] < thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle_s) and \
thumbOpen and firstOpen and secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "Eight"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle) and (angle_list[2] < thr_angle) and (
angle_list[3] < thr_angle) and (angle_list[4] > thr_angle_s) and \
thumbOpen and firstOpen and secondOpen and thirdOpen and not fourthOpen:
gesture_str = "Nine"
return gesture_str
def classify(self, landmarks):
hand = landmarks[:21, :2]
gesture = self._classify(hand)
return gesture
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# palm detector
palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx',
nmsThreshold=0.3,
scoreThreshold=0.6,
backendId=backend_id,
targetId=target_id)
# handpose detector
handpose_detector = MPHandPose(modelPath=args.model,
confThreshold=args.conf_threshold,
backendId=backend_id,
targetId=target_id)
# If input is an image
if args.input is not None:
image = cv.imread(args.input)
# Palm detector inference
palms = palm_detector.infer(image)
hands = np.empty(shape=(0, 132))
# Estimate the pose of each hand
for palm in palms:
# Handpose detector inference
handpose = handpose_detector.infer(image, palm)
if handpose is not None:
hands = np.vstack((hands, handpose))
# Draw results on the input image
image, view_3d = visualize(image, hands, True)
if len(palms) == 0:
print('No palm detected!')
else:
print('Palm detected!')
# Save results
if args.save:
cv.imwrite('result.jpg', image)
print('Results saved to result.jpg\n')
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.imshow('3D HandPose Demo', view_3d)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
# Palm detector inference
palms = palm_detector.infer(frame)
hands = np.empty(shape=(0, 132))
tm.start()
# Estimate the pose of each hand
for palm in palms:
# Handpose detector inference
handpose = handpose_detector.infer(frame, palm)
if handpose is not None:
hands = np.vstack((hands, handpose))
tm.stop()
# Draw results on the input image
frame, view_3d = visualize(frame, hands)
if len(palms) == 0:
print('No palm detected!')
else:
print('Palm detected!')
cv.putText(frame, 'FPS: {:.2f}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
cv.imshow('MediaPipe Handpose Detection Demo', frame)
cv.imshow('3D HandPose Demo', view_3d)
tm.reset()
|