File size: 5,273 Bytes
c5ec220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528081
c5ec220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include <vector>
#include <string>
#include <utility>

#include <opencv2/opencv.hpp>
#include "labelsimagenet1k.h"

using namespace std;
using namespace cv;
using namespace dnn;

vector< pair<dnn::Backend, dnn::Target> > backendTargetPairs = {
        std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_OPENCV, dnn::DNN_TARGET_CPU),
        std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA),
        std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA_FP16),
        std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_TIMVX, dnn::DNN_TARGET_NPU),
        std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CANN, dnn::DNN_TARGET_NPU) };


std::string keys =
"{ help  h          |                                               | Print help message. }"
"{ model m          | image_classification_mobilenetv1_2022apr.onnx | Usage: Set model type, defaults to image_classification_mobilenetv1_2022apr.onnx (v1) }"
"{ input i          |                                               | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ initial_width    | 0                                             | Preprocess input image by initial resizing to a specific width.}"
"{ initial_height   | 0                                             | Preprocess input image by initial resizing to a specific height.}"
"{ rgb              | true                                          | swap R and B plane.}"
"{ crop             | false                                         | Preprocess input image by center cropping.}"
"{ vis v            | true                                          | Usage: Specify to open a new window to show results.}"
"{ backend bt       | 0                                             | Choose one of computation backends: "
"0: (default) OpenCV implementation + CPU, "
"1: CUDA + GPU (CUDA), "
"2: CUDA + GPU (CUDA FP16), "
"3: TIM-VX + NPU, "
"4: CANN + NPU}";


int main(int argc, char** argv)
{
    CommandLineParser parser(argc, argv, keys);

    parser.about("Use this script to run classification deep learning networks in opencv Zoo using OpenCV.");
    if (parser.has("help"))
    {
        parser.printMessage();
        return 0;
    }

    int rszWidth = parser.get<int>("initial_width");
    int rszHeight = parser.get<int>("initial_height");
    bool swapRB = parser.get<bool>("rgb");
    bool crop = parser.get<bool>("crop");
    bool vis = parser.get<bool>("vis");
    String model = parser.get<String>("model");
    int backendTargetid = parser.get<int>("backend");

    if (model.empty())
    {
        CV_Error(Error::StsError, "Model file " + model + " not found");
    }
    vector<string> labels = getLabelsImagenet1k();

    Net net = readNet(samples::findFile(model));
    net.setPreferableBackend(backendTargetPairs[backendTargetid].first);
    net.setPreferableTarget(backendTargetPairs[backendTargetid].second);
    //! [Open a video file or an image file or a camera stream]
    VideoCapture cap;
    if (parser.has("input"))
        cap.open(samples::findFile(parser.get<String>("input")));
    else
        cap.open(0);
    if (!cap.isOpened())
        CV_Error(Error::StsError, "Cannot open video or file");
    Mat frame, blob;
    static const std::string kWinName = model;
    int nbInference = 0;
    while (waitKey(1) < 0)
    {
        cap >> frame;
        if (frame.empty())
        {
            cout << "Frame is empty" << endl;
            waitKey();
            break;
        }

        if (rszWidth != 0 && rszHeight != 0)
        {
            resize(frame, frame, Size(rszWidth, rszHeight));
        }
        Image2BlobParams paramMobilenet;
        paramMobilenet.datalayout = DNN_LAYOUT_NCHW;
        paramMobilenet.ddepth = CV_32F;
        paramMobilenet.mean = Scalar(123.675, 116.28, 103.53);
        paramMobilenet.scalefactor = Scalar(1 / (255. * 0.229), 1 / (255. * 0.224), 1 / (255. * 0.225));
        paramMobilenet.size = Size(224, 224);
        paramMobilenet.swapRB = swapRB;
        if (crop)
            paramMobilenet.paddingmode = DNN_PMODE_CROP_CENTER;
        else
            paramMobilenet.paddingmode = DNN_PMODE_NULL;
        //! [Create a 4D blob from a frame]
        blobFromImageWithParams(frame, blob, paramMobilenet);

        //! [Set input blob]
        net.setInput(blob);
        Mat prob = net.forward();

        //! [Get a class with a highest score]
        Point classIdPoint;
        double confidence;
        minMaxLoc(prob.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
        int classId = classIdPoint.x;
        std::string label = format("%s: %.4f", (labels.empty() ? format("Class #%d", classId).c_str() :
            labels[classId].c_str()),
            confidence);
        if (vis)
        {
            putText(frame, label, Point(0, 55), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
            imshow(kWinName, frame);
        }
        else
        {
            cout << label << endl;
            nbInference++;
            if (nbInference > 100)
            {
                cout << nbInference << " inference made. Demo existing" << endl;
                break;
            }
        }
    }
    return 0;
}