File size: 1,863 Bytes
0bf46d3 2a88bde 0bf46d3 2a88bde 0bf46d3 2a88bde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# image_segmentation_efficientsam
EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything
Notes:
- The current implementation of the EfficientSAM demo uses the EfficientSAM-Ti model, which is specifically tailored for scenarios requiring higher speed and lightweight.
- image_segmentation_efficientsam_ti_2024may.onnx(supports only single point infering)
- MD5 value: 117d6a6cac60039a20b399cc133c2a60
- SHA-256 value: e3957d2cd1422855f350aa7b044f47f5b3eafada64b5904ed330b696229e2943
- image_segmentation_efficientsam_ti_2025april.onnx
- MD5 value: f23cecbb344547c960c933ff454536a3
- SHA-256 value: 4eb496e0a7259d435b49b66faf1754aa45a5c382a34558ddda9a8c6fe5915d77
- image_segmentation_efficientsam_ti_2025april_int8.onnx
- MD5 value: a1164f44b0495b82e9807c7256e95a50
- SHA-256 value: 5ecc8d59a2802c32246e68553e1cf8ce74cf74ba707b84f206eb9181ff774b4e
## Demo
### Python
Run the following command to try the demo:
```shell
python demo.py --input /path/to/image
```
**Click** to select foreground points, **drag** to use box to select and **long press** to select background points on the object you wish to segment in the displayed image. After clicking the **Enter**, the segmentation result will be shown in a new window. Clicking the **Backspace** to clear all the prompts.
## Result
Here are some of the sample results that were observed using the model:


Video inference result:

## Model metrics:
## License
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
#### Contributor Details
## Reference
- https://arxiv.org/abs/2312.00863
- https://github.com/yformer/EfficientSAM
- https://github.com/facebookresearch/segment-anything |