File size: 5,304 Bytes
11e836c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
/*
This sample inpaints the masked area in the given image.
Copyright (C) 2025, Bigvision LLC.
*/
#include <iostream>
#include <fstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
using namespace cv;
using namespace dnn;
using namespace std;
class Lama {
public:
Lama(const string& modelPath) {
loadModel(modelPath);
}
// Function to set up the input image and process it
void process(const Mat& image, const Mat& mask, Mat& result) {
double aspectRatio = static_cast<double>(image.rows) / static_cast<double>(image.cols);
Mat image_blob = blobFromImage(image, 1.0/255.0, Size(512, 512), Scalar(0, 0, 0), false, false, CV_32F);
Mat mask_blob = blobFromImage(mask, 1.0, Size(512, 512), Scalar(0), false, false);
mask_blob = (mask_blob > 0);
mask_blob.convertTo(mask_blob, CV_32F);
mask_blob = mask_blob/255.0;
net.setInput(image_blob, "image");
net.setInput(mask_blob, "mask");
Mat output = net.forward();
postProcess(output, result, aspectRatio);
}
private:
Net net;
// Load Model
void loadModel(const string modelPath) {
net = readNetFromONNX(modelPath);
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
net.setPreferableTarget(DNN_TARGET_CPU);
}
void postProcess(const Mat& output, Mat& result, double aspectRatio) {
Mat output_transposed(3, &output.size[1], CV_32F, const_cast<void*>(reinterpret_cast<const void*>(output.ptr<float>())));
vector<Mat> channels;
for (int i = 0; i < 3; ++i) {
channels.push_back(Mat(output_transposed.size[1], output_transposed.size[2], CV_32F,
output_transposed.ptr<float>(i)));
}
merge(channels, result);
result.convertTo(result, CV_8U);
int h = static_cast<int>(512 * aspectRatio);
resize(result, result, Size(512, h));
}
};
const string about = "This sample demonstrates image inpainting with lama inpainting technique.\n\n";
const string keys =
"{help h | | show help message}"
"{input i | | Path to input image}"
"{ model | inpainting_lama_2024jan.onnx | Path to the lama onnx model file }";
bool drawing = false;
Mat maskGray;
int brush_size = 25;
static void drawMask(int event, int x, int y, int, void*) {
if (event == EVENT_LBUTTONDOWN) {
drawing = true;
} else if (event == EVENT_MOUSEMOVE) {
if (drawing) {
circle(maskGray, Point(x, y), brush_size, Scalar(255), -1);
}
} else if (event == EVENT_LBUTTONUP) {
drawing = false;
}
}
int main(int argc, char **argv)
{
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
cout<<about<<endl;
parser.printMessage();
return 0;
}
parser = CommandLineParser(argc, argv, keys);
parser.about(about);
const string model = parser.get<String>("model");
int height = 512;
int width = 512;
int stdSize = 20;
int stdWeight = 400;
int stdImgSize = 512;
int imgWidth = -1; // Initialization
int fontSize = 50;
int fontWeight = 500;
FontFace fontFace("sans");
Lama lama(model);
Mat image = imread(parser.get<String>("input"));
if (image.empty()) {
cerr << "Error: Input image could not be loaded." << endl;
return -1;
}
imgWidth = min(image.rows, image.cols);
fontSize = min(fontSize, (stdSize*imgWidth)/stdImgSize);
fontWeight = min(fontWeight, (stdWeight*imgWidth)/stdImgSize);
maskGray = Mat::zeros(image.size(), CV_8U);
namedWindow("Draw Mask");
setMouseCallback("Draw Mask", drawMask);
const string label = "Draw the mask on the image. Press space bar when done ";
for(;;) {
Mat displayImage = image.clone();
Mat overlay = image.clone();
double alpha = 0.5;
Rect r = getTextSize(Size(), label, Point(), fontFace, fontSize, fontWeight);
r.height += 2 * fontSize; // padding
r.width += 10; // padding
rectangle(overlay, r, Scalar::all(255), FILLED);
addWeighted(overlay, alpha, displayImage, 1 - alpha, 0, displayImage);
putText(displayImage, label, Point(10, fontSize), Scalar(0,0,0), fontFace, fontSize, fontWeight);
putText(displayImage, "Press 'i' to increase and 'd' to decrease brush size", Point(10, 2*fontSize), Scalar(0,0,0), fontFace, fontSize, fontWeight);
displayImage.setTo(Scalar(255, 255, 255), maskGray > 0); // Highlight mask area
imshow("Draw Mask", displayImage);
char key = waitKey(1);
if (key == 'i') {
brush_size += 1;
cout << "Brush size increased to " << brush_size << endl;
} else if (key == 'd') {
brush_size = max(1, brush_size - 1);
cout << "Brush size decreased to " << brush_size << endl;
} else if (key == ' ') {
break;
} else if (key == 27){
return -1;
}
}
destroyAllWindows();
Mat result;
lama.process(image, maskGray, result);
imshow("Inpainted Output", result);
waitKey(0);
return 0;
}
|