File size: 17,801 Bytes
ea4ac47 1528081 ea4ac47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
#include <vector>
#include <string>
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
using namespace dnn;
const auto backendTargetPairs = vector<pair<Backend, Target>>
{
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
};
const vector<string> nanodetClassLabels =
{
"person", "bicycle", "car", "motorcycle", "airplane", "bus",
"train", "truck", "boat", "traffic light", "fire hydrant",
"stop sign", "parking meter", "bench", "bird", "cat", "dog",
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket",
"bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
"banana", "apple", "sandwich", "orange", "broccoli", "carrot",
"hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop",
"mouse", "remote", "keyboard", "cell phone", "microwave",
"oven", "toaster", "sink", "refrigerator", "book", "clock",
"vase", "scissors", "teddy bear", "hair drier", "toothbrush"
};
class NanoDet
{
public:
NanoDet(const String& modelPath, const float probThresh = 0.35, const float iouThresh = 0.6,
const Backend bId = DNN_BACKEND_DEFAULT, const Target tId = DNN_TARGET_CPU) :
modelPath(modelPath), probThreshold(probThresh),
iouThreshold(iouThresh), backendId(bId), targetId(tId),
imageShape(416, 416), regMax(7)
{
this->strides = { 8, 16, 32, 64 };
this->net = readNet(modelPath);
this->net.setPreferableBackend(bId);
this->net.setPreferableTarget(tId);
this->project = Mat::zeros(1, this->regMax + 1, CV_32F);
for (size_t i = 0; i <= this->regMax; ++i)
{
this->project.at<float>(0, i) = static_cast<float>(i);
}
this->mean = Scalar(103.53, 116.28, 123.675);
this->std = Scalar(1.0 / 57.375, 1.0 / 57.12, 1.0 / 58.395);
this->generateAnchors();
}
Mat preProcess(const Mat& inputImage)
{
Image2BlobParams paramNanodet;
paramNanodet.datalayout = DNN_LAYOUT_NCHW;
paramNanodet.ddepth = CV_32F;
paramNanodet.mean = this->mean;
paramNanodet.scalefactor = this->std;
paramNanodet.size = this->imageShape;
Mat blob;
blobFromImageWithParams(inputImage, blob, paramNanodet);
return blob;
}
Mat infer(const Mat& sourceImage)
{
Mat blob = this->preProcess(sourceImage);
this->net.setInput(blob);
vector<Mat> modelOutput;
this->net.forward(modelOutput, this->net.getUnconnectedOutLayersNames());
Mat preds = this->postProcess(modelOutput);
return preds;
}
Mat reshapeIfNeeded(const Mat& input)
{
if (input.dims == 3)
{
return input.reshape(0, input.size[1]);
}
return input;
}
Mat softmaxActivation(const Mat& input)
{
Mat x_exp, x_sum, x_repeat_sum, result;
exp(input.reshape(0, input.total() / (this->regMax + 1)), x_exp);
reduce(x_exp, x_sum, 1, REDUCE_SUM, CV_32F);
repeat(x_sum, 1, this->regMax + 1, x_repeat_sum);
divide(x_exp, x_repeat_sum, result);
return result;
}
Mat applyProjection(Mat& input)
{
Mat repeat_project;
repeat(this->project, input.rows, 1, repeat_project);
multiply(input, repeat_project, input);
reduce(input, input, 1, REDUCE_SUM, CV_32F);
Mat projection = input.col(0).clone();
return projection.reshape(0, projection.total() / 4);
}
void preNMS(Mat& anchors, Mat& bbox_pred, Mat& cls_score, const int nms_pre = 1000)
{
Mat max_scores;
reduce(cls_score, max_scores, 1, REDUCE_MAX);
Mat indices;
sortIdx(max_scores.t(), indices, SORT_DESCENDING);
Mat indices_float = indices.colRange(0, nms_pre);
Mat selected_anchors, selected_bbox_pred, selected_cls_score;
for (int j = 0; j < indices_float.cols; ++j)
{
selected_anchors.push_back(anchors.row(indices_float.at<int>(j)));
selected_bbox_pred.push_back(bbox_pred.row(indices_float.at<int>(j)));
selected_cls_score.push_back(cls_score.row(indices_float.at<int>(j)));
}
anchors = selected_anchors;
bbox_pred = selected_bbox_pred;
cls_score = selected_cls_score;
}
void clipBoundingBoxes(Mat& x1, Mat& y1, Mat& x2, Mat& y2)
{
Mat zeros = Mat::zeros(x1.size(), x1.type());
x1 = min(max(x1, zeros), Scalar(this->imageShape.width - 1));
y1 = min(max(y1, zeros), Scalar(this->imageShape.height - 1));
x2 = min(max(x2, zeros), Scalar(this->imageShape.width - 1));
y2 = min(max(y2, zeros), Scalar(this->imageShape.height - 1));
}
Mat calculateBoundingBoxes(const Mat& anchors, const Mat& bbox_pred)
{
Mat x1 = anchors.col(0) - bbox_pred.col(0);
Mat y1 = anchors.col(1) - bbox_pred.col(1);
Mat x2 = anchors.col(0) + bbox_pred.col(2);
Mat y2 = anchors.col(1) + bbox_pred.col(3);
clipBoundingBoxes(x1, y1, x2, y2);
Mat bboxes;
hconcat(vector<Mat>{x1, y1, x2, y2}, bboxes);
return bboxes;
}
vector<Rect2d> bboxMatToRect2d(const Mat& bboxes)
{
Mat bboxes_wh(bboxes.clone());
bboxes_wh.colRange(2, 4) = bboxes_wh.colRange(2, 4) -= bboxes_wh.colRange(0, 2);
vector<Rect2d> boxesXYXY;
for (size_t i = 0; i < bboxes_wh.rows; i++)
{
boxesXYXY.emplace_back(bboxes.at<float>(i, 0),
bboxes.at<float>(i, 1),
bboxes.at<float>(i, 2),
bboxes.at<float>(i, 3));
}
return boxesXYXY;
}
Mat postProcess(const vector<Mat>& preds)
{
vector<Mat> cls_scores, bbox_preds;
for (size_t i = 0; i < preds.size(); i += 2)
{
cls_scores.push_back(preds[i]);
bbox_preds.push_back(preds[i + 1]);
}
vector<Mat> bboxes_mlvl;
vector<Mat> scores_mlvl;
for (size_t i = 0; i < strides.size(); ++i)
{
if (i >= cls_scores.size() || i >= bbox_preds.size()) continue;
// Extract necessary data
int stride = strides[i];
Mat cls_score = reshapeIfNeeded(cls_scores[i]);
Mat bbox_pred = reshapeIfNeeded(bbox_preds[i]);
Mat anchors = anchorsMlvl[i].t();
// Softmax activation, projection, and calculate bounding boxes
bbox_pred = softmaxActivation(bbox_pred);
bbox_pred = applyProjection(bbox_pred);
bbox_pred = stride * bbox_pred;
const int nms_pre = 1000;
if (nms_pre > 0 && cls_score.rows > nms_pre)
{
preNMS(anchors, bbox_pred, cls_score, nms_pre);
}
Mat bboxes = calculateBoundingBoxes(anchors, bbox_pred);
bboxes_mlvl.push_back(bboxes);
scores_mlvl.push_back(cls_score);
}
Mat bboxes;
Mat scores;
vconcat(bboxes_mlvl, bboxes);
vconcat(scores_mlvl, scores);
vector<Rect2d> boxesXYXY = bboxMatToRect2d(bboxes);
vector<int> classIds;
vector<float> confidences;
for (size_t i = 0; i < scores.rows; ++i)
{
Point maxLoc;
minMaxLoc(scores.row(i), nullptr, nullptr, nullptr, &maxLoc);
classIds.push_back(maxLoc.x);
confidences.push_back(scores.at<float>(i, maxLoc.x));
}
vector<int> indices;
NMSBoxesBatched(boxesXYXY, confidences, classIds, probThreshold, iouThreshold, indices);
Mat result(int(indices.size()), 6, CV_32FC1);
int row = 0;
for (auto idx : indices)
{
bboxes.rowRange(idx, idx + 1).copyTo(result(Rect(0, row, 4, 1)));
result.at<float>(row, 4) = confidences[idx];
result.at<float>(row, 5) = static_cast<float>(classIds[idx]);
row++;
}
if (indices.size() == 0)
{
return Mat();
}
return result;
}
void generateAnchors()
{
for (const int stride : strides) {
int feat_h = this->imageShape.height / stride;
int feat_w = this->imageShape.width / stride;
vector<Mat> anchors;
for (int y = 0; y < feat_h; ++y)
{
for (int x = 0; x < feat_w; ++x)
{
float shift_x = x * stride;
float shift_y = y * stride;
float cx = shift_x + 0.5 * (stride - 1);
float cy = shift_y + 0.5 * (stride - 1);
Mat anchor_point = (Mat_<float>(2, 1) << cx, cy);
anchors.push_back(anchor_point);
}
}
Mat anchors_mat;
hconcat(anchors, anchors_mat);
this->anchorsMlvl.push_back(anchors_mat);
}
}
private:
Net net;
String modelPath;
vector<int> strides;
Size imageShape;
int regMax;
float probThreshold;
float iouThreshold;
Backend backendId;
Target targetId;
Mat project;
Scalar mean;
Scalar std;
vector<Mat> anchorsMlvl;
};
// Function to resize and pad an image and return both the image and scale information
tuple<Mat, vector<double>> letterbox(const Mat& sourceImage, const Size& target_size = Size(416, 416))
{
Mat img = sourceImage.clone();
double top = 0, left = 0, newh = target_size.height, neww = target_size.width;
if (img.rows != img.cols)
{
double hw_scale = static_cast<double>(img.rows) / img.cols;
if (hw_scale > 1)
{
newh = target_size.height;
neww = static_cast<int>(target_size.width / hw_scale);
resize(img, img, Size(neww, newh), 0, 0, INTER_AREA);
left = static_cast<int>((target_size.width - neww) * 0.5);
copyMakeBorder(img, img, 0, 0, left, target_size.width - neww - left, BORDER_CONSTANT, Scalar(0));
}
else
{
newh = static_cast<int>(target_size.height * hw_scale);
neww = target_size.width;
resize(img, img, Size(neww, newh), 0, 0, INTER_AREA);
top = static_cast<int>((target_size.height - newh) * 0.5);
copyMakeBorder(img, img, top, target_size.height - newh - top, 0, 0, BORDER_CONSTANT, Scalar(0));
}
}
else
{
resize(img, img, target_size, 0, 0, INTER_AREA);
}
vector<double> letterbox_scale = {top, left, newh, neww};
return make_tuple(img, letterbox_scale);
}
// Function to scale bounding boxes back to original image coordinates
vector<int> unletterbox(const Mat& bbox, const Size& original_image_shape, const vector<double>& letterbox_scale)
{
vector<int> ret(bbox.cols);
int h = original_image_shape.height;
int w = original_image_shape.width;
double top = letterbox_scale[0];
double left = letterbox_scale[1];
double newh = letterbox_scale[2];
double neww = letterbox_scale[3];
if (h == w)
{
double ratio = static_cast<double>(h) / newh;
for (int& val : ret)
{
val = static_cast<int>(val * ratio);
}
return ret;
}
double ratioh = static_cast<double>(h) / newh;
double ratiow = static_cast<double>(w) / neww;
ret[0] = max(static_cast<int>((bbox.at<float>(0) - left) * ratiow), 0);
ret[1] = max(static_cast<int>((bbox.at<float>(1) - top) * ratioh), 0);
ret[2] = min(static_cast<int>((bbox.at<float>(2) - left) * ratiow), w);
ret[3] = min(static_cast<int>((bbox.at<float>(3) - top) * ratioh), h);
return ret;
}
// Function to visualize predictions on an image
Mat visualize(const Mat& preds, const Mat& result_image, const vector<double>& letterbox_scale, bool video, double fps = 0.0)
{
Mat visualized_image = result_image.clone();
// Draw FPS if provided
if (fps > 0.0 && video)
{
std::ostringstream fps_stream;
fps_stream << "FPS: " << std::fixed << std::setprecision(2) << fps;
putText(visualized_image, fps_stream.str(), Point(10, 25), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
}
// Draw bounding boxes and labels for each prediction
for (size_t i = 0; i < preds.rows; i++)
{
Mat pred = preds.row(i);
Mat bbox = pred.colRange(0, 4);
double conf = pred.at<float>(4);
int classid = static_cast<int>(pred.at<float>(5));
// Convert bbox coordinates back to original image space
vector<int> unnormalized_bbox = unletterbox(bbox, visualized_image.size(), letterbox_scale);
// Draw bounding box
rectangle(visualized_image, Point(unnormalized_bbox[0], unnormalized_bbox[1]),
Point(unnormalized_bbox[2], unnormalized_bbox[3]), Scalar(0, 255, 0), 2);
// Draw label
stringstream label;
label << nanodetClassLabels[classid] << ": " << fixed << setprecision(2) << conf;
putText(visualized_image, label.str(), Point(unnormalized_bbox[0], unnormalized_bbox[1] - 10),
FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 2);
}
return visualized_image;
}
void processImage(Mat& inputImage, NanoDet& nanodet, TickMeter& tm, bool save, bool vis, bool video)
{
cvtColor(inputImage, inputImage, COLOR_BGR2RGB);
tuple<Mat, vector<double>> w = letterbox(inputImage);
Mat inputBlob = get<0>(w);
vector<double> letterboxScale = get<1>(w);
tm.start();
Mat predictions = nanodet.infer(inputBlob);
tm.stop();
if (!video)
{
cout << "Inference time: " << tm.getTimeMilli() << " ms\n";
}
Mat img = visualize(predictions, inputImage, letterboxScale, video, tm.getFPS());
cvtColor(img, img, COLOR_BGR2RGB);
if (save)
{
static const string kOutputName = "result.jpg";
imwrite(kOutputName, img);
if (!video)
{
cout << "Results saved to " + kOutputName << endl;
}
}
if (vis)
{
static const string kWinName = "model";
imshow(kWinName, img);
}
}
const String keys =
"{ help h | | Print help message. }"
"{ model m | object_detection_nanodet_2022nov.onnx | Usage: Path to the model, defaults to object_detection_nanodet_2022nov.onnx }"
"{ input i | | Path to the input image. Omit for using the default camera.}"
"{ confidence | 0.35 | Class confidence }"
"{ nms | 0.6 | Enter nms IOU threshold }"
"{ save s | true | Specify to save results. This flag is invalid when using the camera. }"
"{ vis v | true | Specify to open a window for result visualization. This flag is invalid when using the camera. }"
"{ backend bt | 0 | Choose one of computation backends: "
"0: (default) OpenCV implementation + CPU, "
"1: CUDA + GPU (CUDA), "
"2: CUDA + GPU (CUDA FP16), "
"3: TIM-VX + NPU, "
"4: CANN + NPU}";
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
parser.about("Use this script to run Nanodet inference using OpenCV, a contribution by Sri Siddarth Chakaravarthy as part of GSOC_2022.");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string model = parser.get<String>("model");
string inputPath = parser.get<String>("input");
float confThreshold = parser.get<float>("confidence");
float nmsThreshold = parser.get<float>("nms");
bool save = parser.get<bool>("save");
bool vis = parser.get<bool>("vis");
int backendTargetid = parser.get<int>("backend");
if (model.empty())
{
CV_Error(Error::StsError, "Model file " + model + " not found");
}
NanoDet nanodet(model, confThreshold, nmsThreshold,
backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
TickMeter tm;
if (parser.has("input"))
{
Mat inputImage = imread(samples::findFile(inputPath));
static const bool kNotVideo = false;
processImage(inputImage, nanodet, tm, save, vis, kNotVideo);
waitKey(0);
}
else
{
VideoCapture cap;
cap.open(0);
if (!cap.isOpened())
{
CV_Error(Error::StsError, "Cannot open video or file");
}
Mat frame;
while (waitKey(1) < 0)
{
cap >> frame;
if (frame.empty())
{
cout << "Frame is empty" << endl;
waitKey();
break;
}
tm.reset();
static const bool kIsVideo = true;
processImage(frame, nanodet, tm, save, vis, kIsVideo);
}
cap.release();
}
return 0;
}
|