File size: 7,408 Bytes
da19665 a07f7bd da19665 a07f7bd 167c85e da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 1528081 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 a07f7bd da19665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import numpy as np
import cv2 as cv
import argparse
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from nanodet import NanoDet
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
def letterbox(srcimg, target_size=(416, 416)):
img = srcimg.copy()
top, left, newh, neww = 0, 0, target_size[0], target_size[1]
if img.shape[0] != img.shape[1]:
hw_scale = img.shape[0] / img.shape[1]
if hw_scale > 1:
newh, neww = target_size[0], int(target_size[1] / hw_scale)
img = cv.resize(img, (neww, newh), interpolation=cv.INTER_AREA)
left = int((target_size[1] - neww) * 0.5)
img = cv.copyMakeBorder(img, 0, 0, left, target_size[1] - neww - left, cv.BORDER_CONSTANT, value=0) # add border
else:
newh, neww = int(target_size[0] * hw_scale), target_size[1]
img = cv.resize(img, (neww, newh), interpolation=cv.INTER_AREA)
top = int((target_size[0] - newh) * 0.5)
img = cv.copyMakeBorder(img, top, target_size[0] - newh - top, 0, 0, cv.BORDER_CONSTANT, value=0)
else:
img = cv.resize(img, target_size, interpolation=cv.INTER_AREA)
letterbox_scale = [top, left, newh, neww]
return img, letterbox_scale
def unletterbox(bbox, original_image_shape, letterbox_scale):
ret = bbox.copy()
h, w = original_image_shape
top, left, newh, neww = letterbox_scale
if h == w:
ratio = h / newh
ret = ret * ratio
return ret
ratioh, ratiow = h / newh, w / neww
ret[0] = max((ret[0] - left) * ratiow, 0)
ret[1] = max((ret[1] - top) * ratioh, 0)
ret[2] = min((ret[2] - left) * ratiow, w)
ret[3] = min((ret[3] - top) * ratioh, h)
return ret.astype(np.int32)
def vis(preds, res_img, letterbox_scale, fps=None):
ret = res_img.copy()
# draw FPS
if fps is not None:
fps_label = "FPS: %.2f" % fps
cv.putText(ret, fps_label, (10, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# draw bboxes and labels
for pred in preds:
bbox = pred[:4]
conf = pred[-2]
classid = pred[-1].astype(np.int32)
# bbox
xmin, ymin, xmax, ymax = unletterbox(bbox, ret.shape[:2], letterbox_scale)
cv.rectangle(ret, (xmin, ymin), (xmax, ymax), (0, 255, 0), thickness=2)
# label
label = "{:s}: {:.2f}".format(classes[classid], conf)
cv.putText(ret, label, (xmin, ymin - 10), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
return ret
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
parser.add_argument('--input', '-i', type=str,
help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str,
default='object_detection_nanodet_2022nov.onnx', help="Path to the model")
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--confidence', default=0.35, type=float,
help='Class confidence')
parser.add_argument('--nms', default=0.6, type=float,
help='Enter nms IOU threshold')
parser.add_argument('--save', '-s', action='store_true',
help='Specify to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', action='store_true',
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
model = NanoDet(modelPath= args.model,
prob_threshold=args.confidence,
iou_threshold=args.nms,
backend_id=backend_id,
target_id=target_id)
tm = cv.TickMeter()
tm.reset()
if args.input is not None:
image = cv.imread(args.input)
input_blob = cv.cvtColor(image, cv.COLOR_BGR2RGB)
# Letterbox transformation
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model.infer(input_blob)
tm.stop()
print("Inference time: {:.2f} ms".format(tm.getTimeMilli()))
img = vis(preds, image, letterbox_scale)
if args.save:
print('Results saved to result.jpg\n')
cv.imwrite('result.jpg', img)
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, img)
cv.waitKey(0)
else:
print("Press any key to stop video capture")
deviceId = 0
cap = cv.VideoCapture(deviceId)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
input_blob = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model.infer(input_blob)
tm.stop()
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
cv.imshow("NanoDet Demo", img)
tm.reset()
|