File size: 5,964 Bytes
be1656e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
using namespace dnn;
struct TrackingResult
{
bool isLocated;
Rect bbox;
float score;
};
class VitTrack
{
public:
VitTrack(const string& model_path, int backend_id = 0, int target_id = 0)
{
params.net = model_path;
params.backend = backend_id;
params.target = target_id;
model = TrackerVit::create(params);
}
void init(const Mat& image, const Rect& roi)
{
model->init(image, roi);
}
TrackingResult infer(const Mat& image)
{
TrackingResult result;
result.isLocated = model->update(image, result.bbox);
result.score = model->getTrackingScore();
return result;
}
private:
TrackerVit::Params params;
Ptr<TrackerVit> model;
};
Mat visualize(const Mat& image, const Rect& bbox, float score, bool isLocated, double fps = -1.0,
const Scalar& box_color = Scalar(0, 255, 0), const Scalar& text_color = Scalar(0, 255, 0),
double fontScale = 1.0, int fontSize = 1)
{
Mat output = image.clone();
int h = output.rows;
int w = output.cols;
if (fps >= 0)
{
putText(output, "FPS: " + to_string(fps), Point(0, 30), FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize);
}
if (isLocated && score >= 0.3)
{
rectangle(output, bbox, box_color, 2);
putText(output, format("%.2f", score), Point(bbox.x, bbox.y + 25),
FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize);
}
else
{
Size text_size = getTextSize("Target lost!", FONT_HERSHEY_DUPLEX, fontScale, fontSize, nullptr);
int text_x = (w - text_size.width) / 2;
int text_y = (h - text_size.height) / 2;
putText(output, "Target lost!", Point(text_x, text_y), FONT_HERSHEY_DUPLEX, fontScale, Scalar(0, 0, 255), fontSize);
}
return output;
}
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv,
"{help h | | Print help message. }"
"{input i | |Set path to the input video. Omit for using default camera.}"
"{model_path |object_tracking_vittrack_2023sep.onnx |Set model path}"
"{backend_target bt |0 |Choose backend-target pair: 0 - OpenCV implementation + CPU, 1 - CUDA + GPU (CUDA), 2 - CUDA + GPU (CUDA FP16), 3 - TIM-VX + NPU, 4 - CANN + NPU}"
"{save s |false |Specify to save a file with results.}"
"{vis v |true |Specify to open a new window to show results.}");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string input = parser.get<string>("input");
string model_path = parser.get<string>("model_path");
int backend_target = parser.get<int>("backend_target");
bool save = parser.get<bool>("save");
bool vis = parser.get<bool>("vis");
vector<vector<int>> backend_target_pairs =
{
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
};
int backend_id = backend_target_pairs[backend_target][0];
int target_id = backend_target_pairs[backend_target][1];
// Create VitTrack tracker
VitTrack tracker(model_path, backend_id, target_id);
// Open video capture
VideoCapture video;
if (input.empty())
{
video.open(0); // Default camera
}
else
{
video.open(input);
}
if (!video.isOpened())
{
cerr << "Error: Could not open video source" << endl;
return -1;
}
// Select an object
Mat first_frame;
video >> first_frame;
if (first_frame.empty())
{
cerr << "No frames grabbed!" << endl;
return -1;
}
Mat first_frame_copy = first_frame.clone();
putText(first_frame_copy, "1. Drag a bounding box to track.", Point(0, 25), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0));
putText(first_frame_copy, "2. Press ENTER to confirm", Point(0, 50), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0));
Rect roi = selectROI("VitTrack Demo", first_frame_copy);
if (roi.area() == 0)
{
cerr << "No ROI is selected! Exiting..." << endl;
return -1;
}
else
{
cout << "Selected ROI: " << roi << endl;
}
// Create VideoWriter if save option is specified
VideoWriter output_video;
if (save)
{
Size frame_size = first_frame.size();
output_video.open("output.mp4", VideoWriter::fourcc('m', 'p', '4', 'v'), video.get(CAP_PROP_FPS), frame_size);
if (!output_video.isOpened())
{
cerr << "Error: Could not create output video stream" << endl;
return -1;
}
}
// Initialize tracker with ROI
tracker.init(first_frame, roi);
// Track frame by frame
TickMeter tm;
while (waitKey(1) < 0)
{
video >> first_frame;
if (first_frame.empty())
{
cout << "End of video" << endl;
break;
}
// Inference
tm.start();
TrackingResult result = tracker.infer(first_frame);
tm.stop();
// Visualize
Mat frame = first_frame.clone();
frame = visualize(frame, result.bbox, result.score, result.isLocated, tm.getFPS());
if (save)
{
output_video.write(frame);
}
if (vis)
{
imshow("VitTrack Demo", frame);
}
tm.reset();
}
if (save)
{
output_video.release();
}
video.release();
destroyAllWindows();
return 0;
}
|