File size: 9,320 Bytes
47e6010 1047434 167c85e 1047434 47e6010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import argparse
import cv2 as cv
import numpy as np
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from raft import Raft
parser = argparse.ArgumentParser(description='RAFT (https://github.com/princeton-vl/RAFT)')
parser.add_argument('--input1', '-i1', type=str,
help='Usage: Set input1 path to first image, omit if using camera or video.')
parser.add_argument('--input2', '-i2', type=str,
help='Usage: Set input2 path to second image, omit if using camera or video.')
parser.add_argument('--video', '-vid', type=str,
help='Usage: Set video path to desired input video, omit if using camera or two image inputs.')
parser.add_argument('--model', '-m', type=str, default='optical_flow_estimation_raft_2023aug.onnx',
help='Usage: Set model path, defaults to optical_flow_estimation_raft_2023aug.onnx.')
parser.add_argument('--save', '-s', action='store_true',
help='Usage: Specify to save a file with results. Invalid in case of camera input.')
parser.add_argument('--visual', '-vis', action='store_true',
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()
UNKNOWN_FLOW_THRESH = 1e7
def make_color_wheel():
""" Generate color wheel according Middlebury color code.
Returns:
Color wheel(numpy.ndarray): Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
colorwheel = make_color_wheel()
def compute_color(u, v):
""" Compute optical flow color map
Args:
u(numpy.ndarray): Optical flow horizontal map
v(numpy.ndarray): Optical flow vertical map
Returns:
img (numpy.ndarray): Optical flow in color code
"""
[h, w] = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(0, np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def flow_to_image(flow):
"""Convert flow into middlebury color code image
Args:
flow (np.ndarray): The computed flow map
Returns:
(np.ndarray): Image corresponding to the flow map.
"""
u = flow[:, :, 0]
v = flow[:, :, 1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
u[idxUnknow] = 0
v[idxUnknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(-1, np.max(rad))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
img[idx] = 0
return np.uint8(img)
def draw_flow(flow_map, img_width, img_height):
"""Convert flow map to image
Args:
flow_map (np.ndarray): The computed flow map
img_width (int): The width of the first input photo
img_height (int): The height of the first input photo
Returns:
(np.ndarray): Image corresponding to the flow map.
"""
# Convert flow to image
flow_img = flow_to_image(flow_map)
# Convert to BGR
flow_img = cv.cvtColor(flow_img, cv.COLOR_RGB2BGR)
# Resize the depth map to match the input image shape
return cv.resize(flow_img, (img_width, img_height))
def visualize(image1, image2, flow_img):
"""
Combine two input images with resulting flow img and display them together
Args:
image1 (np.ndarray): The first input image.
imag2 (np.ndarray): The second input image.
flow_img (np.ndarray): The output flow map drawn as an image
Returns:
combined_img (np.ndarray): The visualized result.
"""
combined_img = np.hstack((image1, image2, flow_img))
cv.namedWindow("Estimated flow", cv.WINDOW_NORMAL)
cv.imshow("Estimated flow", combined_img)
cv.waitKey(0)
return combined_img
if __name__ == '__main__':
# Instantiate RAFT
model = Raft(modelPath=args.model)
if args.input1 is not None and args.input2 is not None:
# Read image
image1 = cv.imread(args.input1)
image2 = cv.imread(args.input2)
img_height, img_width, img_channels = image1.shape
# Inference
result = model.infer(image1, image2)
# Create flow image based on the result flow map
flow_image = draw_flow(result, img_width, img_height)
# Save results if save is true
if args.save:
print('Results saved to result.jpg\n')
cv.imwrite('result.jpg', flow_image)
# Visualize results in a new window
if args.visual:
input_output_visualization = visualize(image1, image2, flow_image)
elif args.video is not None:
cap = cv.VideoCapture(args.video)
FLOW_FRAME_OFFSET = 3 # Number of frame difference to estimate the optical flow
if args.visual:
cv.namedWindow("Estimated flow", cv.WINDOW_NORMAL)
frame_list = []
img_array = []
frame_num = 0
while cap.isOpened():
try:
# Read frame from the video
ret, prev_frame = cap.read()
frame_list.append(prev_frame)
if not ret:
break
except:
continue
frame_num += 1
if frame_num <= FLOW_FRAME_OFFSET:
continue
else:
frame_num = 0
result = model.infer(frame_list[0], frame_list[-1])
img_height, img_width, img_channels = frame_list[0].shape
flow_img = draw_flow(result, img_width, img_height)
alpha = 0.6
combined_img = cv.addWeighted(frame_list[0], alpha, flow_img, (1-alpha),0)
if args.visual:
cv.imshow("Estimated flow", combined_img)
img_array.append(combined_img)
# Remove the oldest frame
frame_list.pop(0)
# Press key q to stop
if cv.waitKey(1) == ord('q'):
break
cap.release()
if args.save:
fourcc = cv.VideoWriter_fourcc(*'mp4v')
height,width,layers= img_array[0].shape
video = cv.VideoWriter('result.mp4', fourcc, 30.0, (width, height), isColor=True)
for img in img_array:
video.write(img)
video.release()
cv.destroyAllWindows()
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
tm = cv.TickMeter()
while cv.waitKey(30) < 0:
hasFrame1, frame1 = cap.read()
hasFrame2, frame2 = cap.read()
if not hasFrame1:
print('First frame was not grabbed!')
break
if not hasFrame2:
print('Second frame was not grabbed!')
break
# Inference
tm.start()
result = model.infer(frame1, frame2)
tm.stop()
result = draw_flow(result, w, h)
# Draw results on the input image
frame = visualize(frame1, frame2, result)
tm.reset()
|