File size: 2,031 Bytes
e5b568e 260eb6d e7d94f5 260eb6d e5b568e 260eb6d af3dd88 e5b568e 50fc340 af3dd88 85a27e0 50fc340 e5b568e cc1f5f5 e5b568e e7d94f5 e5b568e af3dd88 e7d94f5 e5b568e cc1f5f5 237ca2e 69ad792 237ca2e e5b568e af3dd88 260eb6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# Palm detector from MediaPipe Handpose
This model detects palm bounding boxes and palm landmarks, and is converted from TFLite to ONNX using following tools:
- TFLite model to ONNX: https://github.com/onnx/tensorflow-onnx
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
SSD Anchors are generated from [GenMediaPipePalmDectionSSDAnchors](https://github.com/VimalMollyn/GenMediaPipePalmDectionSSDAnchors)
**Note**:
- Visit https://github.com/google/mediapipe/blob/master/docs/solutions/models.md#hands for models of larger scale.
- `palm_detection_mediapipe_2023feb_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`.
## Demo
### Python
Run the following commands to try the demo:
```bash
# detect on camera input
python demo.py
# detect on an image
python demo.py -i /path/to/image -v
# get help regarding various parameters
python demo.py --help
```
### C++
Install latest OpenCV (with opencv_contrib) and CMake >= 3.24.0 to get started with:
```shell
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build
# detect on camera input
./build/demo
# detect on an image
./build/demo -i=/path/to/image -v
# get help messages
./build/demo -h
```
### Example outputs

## License
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
## Reference
- MediaPipe Handpose: https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
- MediaPipe hands model and model card: https://github.com/google/mediapipe/blob/master/docs/solutions/models.md#hands
- Handpose TFJS:https://github.com/tensorflow/tfjs-models/tree/master/handpose
- Int8 model quantized with rgb evaluation set of FreiHAND: https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html |