File size: 13,096 Bytes
e4da79f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
#include <opencv2/opencv.hpp>
#include "opencv2/dnn.hpp"
#include <iostream>
#include <vector>
#include <map>
#include <string>
#include <numeric>
// YoutuReID class for person re-identification
class YoutuReID {
public:
YoutuReID(const std::string& model_path,
const cv::Size& input_size = cv::Size(128, 256),
int output_dim = 768,
const cv::Scalar& mean = cv::Scalar(0.485, 0.456, 0.406),
const cv::Scalar& std = cv::Scalar(0.229, 0.224, 0.225),
int backend_id = 0,
int target_id = 0)
: model_path_(model_path), input_size_(input_size),
output_dim_(output_dim), mean_(mean), std_(std),
backend_id_(backend_id), target_id_(target_id)
{
model_ = cv::dnn::readNet(model_path_);
model_.setPreferableBackend(backend_id_);
model_.setPreferableTarget(target_id_);
}
void setBackendAndTarget(int backend_id, int target_id) {
backend_id_ = backend_id;
target_id_ = target_id;
model_.setPreferableBackend(backend_id_);
model_.setPreferableTarget(target_id_);
}
void setInputSize(const cv::Size& input_size) {
input_size_ = input_size;
}
// Preprocess image by resizing, normalizing, and creating a blob
cv::Mat preprocess(const cv::Mat& image) {
cv::Mat img;
cv::cvtColor(image, img, cv::COLOR_BGR2RGB);
img.convertTo(img, CV_32F, 1.0 / 255.0);
// Normalize each channel separately
std::vector<cv::Mat> channels(3);
cv::split(img, channels);
channels[0] = (channels[0] - mean_[0]) / std_[0];
channels[1] = (channels[1] - mean_[1]) / std_[1];
channels[2] = (channels[2] - mean_[2]) / std_[2];
cv::merge(channels, img);
return cv::dnn::blobFromImage(img);
}
// Run inference to extract feature vector
cv::Mat infer(const cv::Mat& image) {
cv::Mat input_blob = preprocess(image);
model_.setInput(input_blob);
cv::Mat features = model_.forward();
if (features.dims == 4 && features.size[2] == 1 && features.size[3] == 1) {
features = features.reshape(1, {1, features.size[1]});
}
return features;
}
// Perform query, comparing each query image to each gallery image
std::vector<std::vector<int>> query(const std::vector<cv::Mat>& query_img_list,
const std::vector<cv::Mat>& gallery_img_list,
int topK = 5) {
std::vector<cv::Mat> query_features_list, gallery_features_list;
cv::Mat query_features, gallery_features;
for (size_t i = 0; i < query_img_list.size(); ++i) {
cv::Mat feature = infer(query_img_list[i]);
query_features_list.push_back(feature.clone());
}
cv::vconcat(query_features_list, query_features);
normalizeFeatures(query_features);
for (size_t i = 0; i < gallery_img_list.size(); ++i) {
cv::Mat feature = infer(gallery_img_list[i]);
gallery_features_list.push_back(feature.clone());
}
cv::vconcat(gallery_features_list, gallery_features);
normalizeFeatures(gallery_features);
cv::Mat dist = query_features * gallery_features.t();
return getTopK(dist, topK);
}
private:
// Normalize feature vectors row-wise to unit length
void normalizeFeatures(cv::Mat& features) {
const float epsilon = 1e-6;
for (int i = 0; i < features.rows; ++i) {
cv::Mat featureRow = features.row(i);
float norm = cv::norm(featureRow, cv::NORM_L2);
if (norm < epsilon) {
norm = epsilon;
}
featureRow /= norm;
}
}
// Retrieve Top-K indices from similarity matrix
std::vector<std::vector<int>> getTopK(const cv::Mat& dist, int topK) {
std::vector<std::vector<int>> indices(dist.rows);
for (int i = 0; i < dist.rows; ++i) {
std::vector<std::pair<float, int>> sim_index_pairs;
for (int j = 0; j < dist.cols; ++j) {
sim_index_pairs.emplace_back(dist.at<float>(i, j), j);
}
std::sort(sim_index_pairs.begin(), sim_index_pairs.end(),
[](const std::pair<float, int>& a, const std::pair<float, int>& b) {
return a.first > b.first;
});
for (int k = 0; k < topK && k < sim_index_pairs.size(); ++k) {
indices[i].push_back(sim_index_pairs[k].second);
}
}
return indices;
}
std::string model_path_;
cv::Size input_size_;
int output_dim_;
cv::Scalar mean_, std_;
int backend_id_;
int target_id_;
cv::dnn::Net model_;
};
// Read images from directory and return a pair of image list and file list
std::pair<std::vector<cv::Mat>, std::vector<std::string>> readImagesFromDirectory(const std::string& img_dir, int w = 128, int h = 256) {
std::vector<cv::Mat> img_list;
std::vector<std::string> file_list;
std::vector<std::string> file_names;
cv::glob(img_dir + "/*", file_names, false);
for (size_t i = 0; i < file_names.size(); ++i) {
std::string file_name = file_names[i].substr(file_names[i].find_last_of("/\\") + 1);
cv::Mat img = cv::imread(file_names[i]);
if (!img.empty()) {
cv::resize(img, img, cv::Size(w, h));
img_list.push_back(img);
file_list.push_back(file_name);
}
}
return std::make_pair(img_list, file_list);
}
// Visualize query and gallery results by creating concatenated images
std::map<std::string, cv::Mat> visualize(
const std::map<std::string, std::vector<std::string>>& results,
const std::string& query_dir,
const std::string& gallery_dir,
const cv::Size& output_size = cv::Size(128, 384)) {
std::map<std::string, cv::Mat> results_vis;
for (std::map<std::string, std::vector<std::string>>::const_iterator it = results.begin(); it != results.end(); ++it) {
const std::string& query_file = it->first;
const std::vector<std::string>& top_matches = it->second;
cv::Mat query_img = cv::imread(query_dir + "/" + query_file);
if (query_img.empty()) continue;
cv::resize(query_img, query_img, output_size);
cv::copyMakeBorder(query_img, query_img, 5, 5, 5, 5,
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
cv::putText(query_img, "Query", cv::Point(10, 30),
cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(0, 255, 0), 2);
cv::Mat concat_img = query_img;
for (size_t i = 0; i < top_matches.size(); ++i) {
cv::Mat gallery_img = cv::imread(gallery_dir + "/" + top_matches[i]);
if (gallery_img.empty()) continue;
cv::resize(gallery_img, gallery_img, output_size);
cv::copyMakeBorder(gallery_img, gallery_img, 5, 5, 5, 5,
cv::BORDER_CONSTANT, cv::Scalar(255, 255, 255));
cv::putText(gallery_img, "G" + std::to_string(i), cv::Point(10, 30),
cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(0, 255, 0), 2);
cv::hconcat(concat_img, gallery_img, concat_img);
}
results_vis[query_file] = concat_img;
}
return results_vis;
}
void printHelpMessage() {
std::cout << "usage: demo.cpp [-h] [--query_dir QUERY_DIR] [--gallery_dir GALLERY_DIR] "
<< "[--backend_target BACKEND_TARGET] [--topk TOPK] [--model MODEL] [--save] [--vis]\n\n"
<< "ReID baseline models from Tencent Youtu Lab\n\n"
<< "optional arguments:\n"
<< " -h, --help show this help message and exit\n"
<< " --query_dir QUERY_DIR, -q QUERY_DIR\n"
<< " Query directory.\n"
<< " --gallery_dir GALLERY_DIR, -g GALLERY_DIR\n"
<< " Gallery directory.\n"
<< " --backend_target BACKEND_TARGET, -bt BACKEND_TARGET\n"
<< " Choose one of the backend-target pair to run this demo: 0: (default) OpenCV implementation + "
"CPU, 1: CUDA + GPU (CUDA), 2: CUDA + GPU (CUDA FP16), 3: TIM-VX + NPU, 4: CANN + NPU\n"
<< " --topk TOPK Top-K closest from gallery for each query.\n"
<< " --model MODEL, -m MODEL\n"
<< " Path to the model.\n"
<< " --save, -s Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in "
"case of camera input.\n"
<< " --vis, -v Usage: Specify to open a new window to show results. Invalid in case of camera input.\n";
}
int main(int argc, char** argv) {
// CommandLineParser setup
cv::CommandLineParser parser(argc, argv,
"{help h | | Show help message.}"
"{query_dir q | | Query directory.}"
"{gallery_dir g | | Gallery directory.}"
"{backend_target bt | 0 | Choose one of the backend-target pair to run this demo: 0: (default) OpenCV implementation + CPU, "
"1: CUDA + GPU (CUDA), 2: CUDA + GPU (CUDA FP16), 3: TIM-VX + NPU, 4: CANN + NPU}"
"{topk k | 10 | Top-K closest from gallery for each query.}"
"{model m | person_reid_youtu_2021nov.onnx | Path to the model.}"
"{save s | false | Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.}"
"{vis v | false | Usage: Specify to open a new window to show results. Invalid in case of camera input.}");
if (parser.has("help")) {
printHelpMessage();
return 0;
}
std::string query_dir = parser.get<std::string>("query_dir");
std::string gallery_dir = parser.get<std::string>("gallery_dir");
int backend_target = parser.get<int>("backend_target");
int topK = parser.get<int>("topk");
std::string model_path = parser.get<std::string>("model");
bool save_flag = parser.get<bool>("save");
bool vis_flag = parser.get<bool>("vis");
if (!parser.check()) {
parser.printErrors();
return 1;
}
const std::vector<std::pair<int, int>> backend_target_pairs = {
{cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_TARGET_CPU},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA},
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16},
{cv::dnn::DNN_BACKEND_TIMVX, cv::dnn::DNN_TARGET_NPU},
{cv::dnn::DNN_BACKEND_CANN, cv::dnn::DNN_TARGET_NPU}
};
int backend_id = backend_target_pairs[backend_target].first;
int target_id = backend_target_pairs[backend_target].second;
YoutuReID reid(model_path, cv::Size(128, 256), 768,
cv::Scalar(0.485, 0.456, 0.406),
cv::Scalar(0.229, 0.224, 0.225),
backend_id, target_id);
std::pair<std::vector<cv::Mat>, std::vector<std::string>> query_data = readImagesFromDirectory(query_dir);
std::pair<std::vector<cv::Mat>, std::vector<std::string>> gallery_data = readImagesFromDirectory(gallery_dir);
std::vector<std::vector<int>> indices = reid.query(query_data.first, gallery_data.first, topK);
std::map<std::string, std::vector<std::string>> results;
for (size_t i = 0; i < query_data.second.size(); ++i) {
std::vector<std::string> top_matches;
for (int idx : indices[i]) {
top_matches.push_back(gallery_data.second[idx]);
}
results[query_data.second[i]] = top_matches;
std::cout << "Query: " << query_data.second[i] << "\n";
std::cout << "\tTop-" << topK << " from gallery: ";
for (size_t j = 0; j < top_matches.size(); ++j) {
std::cout << top_matches[j] << " ";
}
std::cout << std::endl;
}
std::map<std::string, cv::Mat> results_vis = visualize(results, query_dir, gallery_dir);
if (save_flag) {
for (std::map<std::string, cv::Mat>::iterator it = results_vis.begin(); it != results_vis.end(); ++it) {
std::string save_path = "result-" + it->first;
cv::imwrite(save_path, it->second);
}
}
if (vis_flag) {
for (std::map<std::string, cv::Mat>::iterator it = results_vis.begin(); it != results_vis.end(); ++it) {
cv::namedWindow("result-" + it->first, cv::WINDOW_AUTOSIZE);
cv::imshow("result-" + it->first, it->second);
cv::waitKey(0);
cv::destroyAllWindows();
}
}
return 0;
}
|