File size: 2,131 Bytes
ab8d410 85a27e0 ab8d410 9665382 ab8d410 9665382 ab8d410 69ad792 ab8d410 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# Pose estimation from MediaPipe Pose
This model estimates 33 pose keypoints and person segmentation mask per detected person from [person detector](../person_detection_mediapipe). (The image below is referenced from [MediaPipe Pose Keypoints](https://github.com/tensorflow/tfjs-models/tree/master/pose-detection#blazepose-keypoints-used-in-mediapipe-blazepose))

This model is converted from TFlite to ONNX using following tools:
- TFLite model to ONNX: https://github.com/onnx/tensorflow-onnx
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
**Note**:
- Visit https://github.com/google/mediapipe/blob/master/docs/solutions/models.md#pose for models of larger scale.
- `pose_estimation_mediapipe_2023mar_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`.
## Demo
### python
Run the following commands to try the demo:
```bash
# detect on camera input
python demo.py
# detect on an image
python demo.py -i /path/to/image -v
```
### C++
Install latest OpenCV and CMake >= 3.24.0 to get started with:
```shell
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build
# detect on camera input
./build/opencv_zoo_pose_estimation_mediapipe
# detect on an image
./build/opencv_zoo_pose_estimation_mediapipe -m=/path/to/model -i=/path/to/image -v
# get help messages
./build/opencv_zoo_pose_estimation_mediapipe -h
```
### Example outputs

## License
All files in this directory are licensed under [Apache 2.0 License](LICENSE).
## Reference
- MediaPipe Pose: https://developers.google.com/mediapipe/solutions/vision/pose_landmarker
- MediaPipe pose model and model card: https://github.com/google/mediapipe/blob/master/docs/solutions/models.md#pose
- BlazePose TFJS: https://github.com/tensorflow/tfjs-models/tree/master/pose-detection/src/blazepose_tfjs
|