File size: 5,500 Bytes
bd0a204
 
 
 
 
 
 
 
 
 
 
a07f7bd
167c85e
 
 
 
 
a07f7bd
 
 
 
 
 
 
 
 
bd0a204
 
 
a07f7bd
 
fefbdcf
a07f7bd
fefbdcf
a07f7bd
fefbdcf
a07f7bd
fefbdcf
a07f7bd
 
 
 
 
 
 
 
 
 
 
 
 
bd0a204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07f7bd
 
 
bd0a204
 
 
 
a07f7bd
 
 
bd0a204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07f7bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.

import argparse

import numpy as np
import cv2 as cv

# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
       "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"

from wechatqrcode import WeChatQRCode

# Valid combinations of backends and targets
backend_target_pairs = [
    [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA_FP16],
    [cv.dnn.DNN_BACKEND_TIMVX,  cv.dnn.DNN_TARGET_NPU],
    [cv.dnn.DNN_BACKEND_CANN,   cv.dnn.DNN_TARGET_NPU]
]

parser = argparse.ArgumentParser(
    description="WeChat QR code detector for detecting and parsing QR code (https://github.com/opencv/opencv_contrib/tree/master/modules/wechat_qrcode)")
parser.add_argument('--input', '-i', type=str,
                    help='Usage: Set path to the input image. Omit for using default camera.')
parser.add_argument('--detect_prototxt_path', type=str, default='detect_2021nov.prototxt',
                    help='Usage: Set path to detect.prototxt.')
parser.add_argument('--detect_model_path', type=str, default='detect_2021nov.caffemodel',
                    help='Usage: Set path to detect.caffemodel.')
parser.add_argument('--sr_prototxt_path', type=str, default='sr_2021nov.prototxt',
                    help='Usage: Set path to sr.prototxt.')
parser.add_argument('--sr_model_path', type=str, default='sr_2021nov.caffemodel',
                    help='Usage: Set path to sr.caffemodel.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
                    help='''Choose one of the backend-target pair to run this demo:
                        {:d}: (default) OpenCV implementation + CPU,
                        {:d}: CUDA + GPU (CUDA),
                        {:d}: CUDA + GPU (CUDA FP16),
                        {:d}: TIM-VX + NPU,
                        {:d}: CANN + NPU
                    '''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--save', '-s', action='store_true',
                    help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
                    help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()

def visualize(image, res, points, points_color=(0, 255, 0), text_color=(0, 255, 0), fps=None):
    output = image.copy()
    h, w, _ = output.shape

    if fps is not None:
        cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)

    fontScale = 0.5
    fontSize = 1
    for r, p in zip(res, points):
        p = p.astype(np.int32)
        for _p in p:
            cv.circle(output, _p, 10, points_color, -1)

        qrcode_center_x = int((p[0][0] + p[2][0]) / 2)
        qrcode_center_y = int((p[0][1] + p[2][1]) / 2)

        text_size, baseline = cv.getTextSize(r, cv.FONT_HERSHEY_DUPLEX, fontScale, fontSize)
        text_x = qrcode_center_x - int(text_size[0] / 2)
        text_y = qrcode_center_y - int(text_size[1] / 2)
        cv.putText(output, '{}'.format(r), (text_x, text_y), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize)

    return output


if __name__ == '__main__':
    backend_id = backend_target_pairs[args.backend_target][0]
    target_id = backend_target_pairs[args.backend_target][1]

    # Instantiate WeChatQRCode
    model = WeChatQRCode(args.detect_prototxt_path,
        args.detect_model_path,
        args.sr_prototxt_path,
        args.sr_model_path,
        backendId=backend_id,
        targetId=target_id)

    # If input is an image:
    if args.input is not None:
        image = cv.imread(args.input)
        res, points = model.infer(image)

        # Print results:
        print(res)
        print(points)

        # Draw results on the input image
        image = visualize(image, res, points)

        # Save results if save is true
        if args.save:
            print('Results saved to result.jpg\n')
            cv.imwrite('result.jpg', image)

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, image)
            cv.waitKey(0)
    else: # Omit input to call default camera
        deviceId = 0
        cap = cv.VideoCapture(deviceId)

        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            hasFrame, frame = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            # Inference
            tm.start()
            res, points = model.infer(frame)
            tm.stop()
            fps = tm.getFPS()

            # Draw results on the input image
            frame = visualize(frame, res, points, fps=fps)

            # Visualize results in a new window
            cv.imshow('WeChatQRCode Demo', frame)

            tm.reset()