File size: 7,013 Bytes
ac5c83c
 
 
 
 
 
 
 
 
 
 
 
167c85e
 
 
 
 
ac5c83c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.

import argparse

import numpy as np
import cv2 as cv

# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
       "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"

from ppocr_det import PPOCRDet

# Valid combinations of backends and targets
backend_target_pairs = [
    [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA_FP16],
    [cv.dnn.DNN_BACKEND_TIMVX,  cv.dnn.DNN_TARGET_NPU],
    [cv.dnn.DNN_BACKEND_CANN,   cv.dnn.DNN_TARGET_NPU]
]

parser = argparse.ArgumentParser(description='PP-OCR Text Detection (https://arxiv.org/abs/2206.03001).')
parser.add_argument('--input', '-i', type=str,
                    help='Usage: Set path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='./text_detection_en_ppocrv3_2023may.onnx',
                    help='Usage: Set model path, defaults to text_detection_en_ppocrv3_2023may.onnx.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
                    help='''Choose one of the backend-target pair to run this demo:
                        {:d}: (default) OpenCV implementation + CPU,
                        {:d}: CUDA + GPU (CUDA),
                        {:d}: CUDA + GPU (CUDA FP16),
                        {:d}: TIM-VX + NPU,
                        {:d}: CANN + NPU
                    '''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--width', type=int, default=736,
                    help='Usage: Resize input image to certain width, default = 736. It should be multiple by 32.')
parser.add_argument('--height', type=int, default=736,
                    help='Usage: Resize input image to certain height, default = 736. It should be multiple by 32.')
parser.add_argument('--binary_threshold', type=float, default=0.3,
                    help='Usage: Threshold of the binary map, default = 0.3.')
parser.add_argument('--polygon_threshold', type=float, default=0.5,
                    help='Usage: Threshold of polygons, default = 0.5.')
parser.add_argument('--max_candidates', type=int, default=200,
                    help='Usage: Set maximum number of polygon candidates, default = 200.')
parser.add_argument('--unclip_ratio', type=np.float64, default=2.0,
                    help=' Usage: The unclip ratio of the detected text region, which determines the output size, default = 2.0.')
parser.add_argument('--save', '-s', action='store_true',
                    help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
                    help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()

def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), isClosed=True, thickness=2, fps=None):
    output = image.copy()

    if fps is not None:
        cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)

    pts = np.array(results[0])
    output = cv.polylines(output, pts, isClosed, box_color, thickness)

    return output

if __name__ == '__main__':
    backend_id = backend_target_pairs[args.backend_target][0]
    target_id = backend_target_pairs[args.backend_target][1]

    # Instantiate model
    model = PPOCRDet(modelPath=args.model,
               inputSize=[args.width, args.height],
               binaryThreshold=args.binary_threshold,
               polygonThreshold=args.polygon_threshold,
               maxCandidates=args.max_candidates,
               unclipRatio=args.unclip_ratio,
               backendId=backend_id,
               targetId=target_id)

    # If input is an image
    if args.input is not None:
        original_image = cv.imread(args.input)
        original_w = original_image.shape[1]
        original_h = original_image.shape[0]
        scaleHeight = original_h / args.height
        scaleWidth = original_w / args.width
        image = cv.resize(original_image, [args.width, args.height])

        # Inference
        results = model.infer(image)

        # Scale the results bounding box
        for i in range(len(results[0])):
            for j in range(4):
                box = results[0][i][j]
                results[0][i][j][0] = box[0] * scaleWidth
                results[0][i][j][1] = box[1] * scaleHeight

        # Print results
        print('{} texts detected.'.format(len(results[0])))
        for idx, (bbox, score) in enumerate(zip(results[0], results[1])):
            print('{}: {} {} {} {}, {:.2f}'.format(idx, bbox[0], bbox[1], bbox[2], bbox[3], score))

        # Draw results on the input image
        original_image = visualize(original_image, results)

        # Save results if save is true
        if args.save:
            print('Resutls saved to result.jpg\n')
            cv.imwrite('result.jpg', original_image)

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, original_image)
            cv.waitKey(0)
    else: # Omit input to call default camera
        deviceId = 0
        cap = cv.VideoCapture(deviceId)

        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            hasFrame, original_image = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            original_w = original_image.shape[1]
            original_h = original_image.shape[0]
            scaleHeight = original_h / args.height
            scaleWidth = original_w / args.width
            frame = cv.resize(original_image, [args.width, args.height])
            # Inference
            tm.start()
            results = model.infer(frame) # results is a tuple
            tm.stop()

            # Scale the results bounding box
            for i in range(len(results[0])):
                for j in range(4):
                    box = results[0][i][j]
                    results[0][i][j][0] = box[0] * scaleWidth
                    results[0][i][j][1] = box[1] * scaleHeight

            # Draw results on the input image
            original_image = visualize(original_image, results, fps=tm.getFPS())

            # Visualize results in a new Window
            cv.imshow('{} Demo'.format(model.name), original_image)

            tm.reset()