File size: 7,406 Bytes
42310ef 167c85e 42310ef 43ea797 42310ef a07f7bd ec17a5b 42310ef a07f7bd 0367d6a a07f7bd 42310ef a07f7bd 43ea797 0367d6a 42310ef ec17a5b a07f7bd 42310ef b81d9fd 42310ef b81d9fd 42310ef b81d9fd 42310ef 1528081 b81d9fd 42310ef b81d9fd 42310ef b81d9fd 42310ef b81d9fd 42310ef 8b13820 42310ef 8b13820 b81d9fd 8b13820 b81d9fd 8b13820 42310ef b81d9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import sys
import argparse
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from crnn import CRNN
sys.path.append('../text_detection_ppocr')
from ppocr_det import PPOCRDet
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(
description="An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)")
parser.add_argument('--input', '-i', type=str,
help='Usage: Set path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx',
help='Usage: Set model path, defaults to text_recognition_CRNN_EN_2021sep.onnx.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--width', type=int, default=736,
help='Preprocess input image by resizing to a specific width. It should be multiple by 32.')
parser.add_argument('--height', type=int, default=736,
help='Preprocess input image by resizing to a specific height. It should be multiple by 32.')
parser.add_argument('--save', '-s', action='store_true',
help='Usage: Specify to save a file with results. Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()
def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2):
output = image.copy()
pts = np.array(boxes[0])
output = cv.polylines(output, pts, isClosed, color, thickness)
for box, text in zip(boxes[0], texts):
cv.putText(output, text, (box[1].astype(np.int32)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
return output
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# Instantiate PPOCRDet for text detection
detector = PPOCRDet(modelPath='../text_detection_ppocr/text_detection_en_ppocrv3_2023may.onnx',
inputSize=[args.width, args.height],
binaryThreshold=0.3,
polygonThreshold=0.5,
maxCandidates=200,
unclipRatio=2.0,
backendId=backend_id,
targetId=target_id)
# Instantiate CRNN for text recognition
recognizer = CRNN(modelPath=args.model, backendId=backend_id, targetId=target_id)
# If input is an image
if args.input is not None:
original_image = cv.imread(args.input)
original_w = original_image.shape[1]
original_h = original_image.shape[0]
scaleHeight = original_h / args.height
scaleWidth = original_w / args.width
image = cv.resize(original_image, [args.width, args.height])
# Inference
results = detector.infer(image)
texts = []
for box, score in zip(results[0], results[1]):
texts.append(
recognizer.infer(image, box.reshape(8))
)
# Scale the results bounding box
for i in range(len(results[0])):
for j in range(4):
box = results[0][i][j]
results[0][i][j][0] = box[0] * scaleWidth
results[0][i][j][1] = box[1] * scaleHeight
# Draw results on the input image
original_image = visualize(original_image, results, texts)
# Save results if save is true
if args.save:
print('Results saved to result.jpg\n')
cv.imwrite('result.jpg', original_image)
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, original_image)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, original_image = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
original_w = original_image.shape[1]
original_h = original_image.shape[0]
scaleHeight = original_h / args.height
scaleWidth = original_w / args.width
frame = cv.resize(original_image, [args.width, args.height])
# Inference of text detector
tm.start()
results = detector.infer(frame)
tm.stop()
cv.putText(frame, 'Latency - {}: {:.2f}'.format(detector.name, tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
tm.reset()
# Inference of text recognizer
if len(results[0]) and len(results[1]):
texts = []
tm.start()
for box, score in zip(results[0], results[1]):
result = np.hstack(
(box.reshape(8), score)
)
texts.append(
recognizer.infer(frame, box.reshape(8))
)
tm.stop()
cv.putText(frame, 'Latency - {}: {:.2f}'.format(recognizer.name, tm.getFPS()), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
tm.reset()
# Scale the results bounding box
for i in range(len(results[0])):
for j in range(4):
box = results[0][i][j]
results[0][i][j][0] = box[0] * scaleWidth
results[0][i][j][1] = box[1] * scaleHeight
# Draw results on the input image
original_image = visualize(original_image, results, texts)
print(texts)
# Visualize results in a new Window
cv.imshow('{} Demo'.format(recognizer.name), original_image)
|