File size: 5,584 Bytes
e5b568e
 
6eef315
e5b568e
 
 
6eef315
596a24b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b568e
 
596a24b
e5b568e
 
 
596a24b
 
e5b568e
 
 
 
 
 
 
 
 
6eef315
596a24b
e5b568e
 
596a24b
 
 
 
e5b568e
 
 
596a24b
e5b568e
596a24b
e5b568e
6eef315
83c563e
596a24b
83c563e
 
 
 
6eef315
596a24b
e5b568e
 
 
596a24b
e5b568e
 
 
6eef315
596a24b
 
e5b568e
 
 
83c563e
 
 
 
6eef315
 
83c563e
 
6eef315
83c563e
596a24b
83c563e
 
 
 
596a24b
83c563e
596a24b
e5b568e
 
 
 
596a24b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b568e
83c563e
e5b568e
83c563e
57699b7
 
 
596a24b
 
 
 
 
e5b568e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import sys
import numpy as np
import cv2 as cv

import onnx
from neural_compressor.experimental import Quantization, common
from neural_compressor.experimental.metric import BaseMetric


class Accuracy(BaseMetric):
    def __init__(self, *args):
        self.pred_list = []
        self.label_list = []
        self.samples = 0

    def update(self, predict, label):
        predict = np.array(predict)
        label = np.array(label)
        self.pred_list.append(np.argmax(predict[0]))
        self.label_list.append(label[0][0])
        self.samples += 1

    def reset(self):
        self.pred_list = []
        self.label_list = []
        self.samples = 0

    def result(self):
        correct_num = np.sum(np.array(self.pred_list) == np.array(self.label_list))
        return correct_num / self.samples


class Quantize:
    def __init__(self, model_path, config_path, custom_dataset=None, eval_dataset=None, metric=None):
        self.model_path = model_path
        self.config_path = config_path
        self.custom_dataset = custom_dataset
        self.eval_dataset = eval_dataset
        self.metric = metric

    def run(self):
        print('Quantizing (int8) with Intel\'s Neural Compressor:')
        print('\tModel: {}'.format(self.model_path))
        print('\tConfig: {}'.format(self.config_path))

        output_name = '{}-int8-quantized.onnx'.format(self.model_path[:-5])

        model = onnx.load(self.model_path)
        quantizer = Quantization(self.config_path)
        quantizer.model = common.Model(model)
        if self.custom_dataset is not None:
            quantizer.calib_dataloader = common.DataLoader(self.custom_dataset)
        if self.eval_dataset is not None:
            quantizer.eval_dataloader = common.DataLoader(self.eval_dataset)
        if self.metric is not None:
            quantizer.metric = common.Metric(metric_cls=self.metric, name='metric')
        q_model = quantizer()
        q_model.save(output_name)


class Dataset:
    def __init__(self, root, size=None, dim='chw', scale=1.0, mean=0.0, std=1.0, swapRB=False, toFP32=False):
        self.root = root
        self.size = size
        self.dim = dim
        self.scale = scale
        self.mean = mean
        self.std = std
        self.swapRB = swapRB
        self.toFP32 = toFP32

        self.image_list, self.label_list = self.load_image_list(self.root)

    def load_image_list(self, path):
        image_list = []
        label_list = []
        for f in os.listdir(path):
            if not f.endswith('.jpg'):
                continue
            image_list.append(os.path.join(path, f))
            label_list.append(1)
        return image_list, label_list

    def __getitem__(self, idx):
        img = cv.imread(self.image_list[idx])

        if self.swapRB:
            img = cv.cvtColor(img, cv.COLOR_BGR2RGB)

        if self.size:
            img = cv.resize(img, dsize=self.size)

        if self.toFP32:
            img = img.astype(np.float32)

        img = img * self.scale
        img = img - self.mean
        img = img / self.std

        if self.dim == 'chw':
            img = img.transpose(2, 0, 1)  # hwc -> chw

        return img, self.label_list[idx]

    def __len__(self):
        return len(self.image_list)


class FerDataset(Dataset):
    def __init__(self, root, size=None, dim='chw', scale=1.0, mean=0.0, std=1.0, swapRB=False, toFP32=False):
        super(FerDataset, self).__init__(root, size, dim, scale, mean, std, swapRB, toFP32)

    def load_image_list(self, path):
        image_list = []
        label_list = []
        for f in os.listdir(path):
            if not f.endswith('.jpg'):
                continue
            image_list.append(os.path.join(path, f))
            label_list.append(int(f.split("_")[2]))
        return image_list, label_list


models = dict(
    mobilenetv1=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx',
                         config_path='./inc_configs/mobilenet.yaml'),
    mobilenetv2=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx',
                         config_path='./inc_configs/mobilenet.yaml'),
    mp_handpose=Quantize(model_path='../../models/handpose_estimation_mediapipe/handpose_estimation_mediapipe_2022may.onnx',
                         config_path='./inc_configs/mp_handpose.yaml',
                         custom_dataset=Dataset(root='../../benchmark/data/palm_detection', dim='hwc', swapRB=True, mean=127.5, std=127.5, toFP32=True)),
    fer=Quantize(model_path='../../models/facial_expression_recognition/facial_expression_recognition_mobilefacenet_2022july.onnx',
                 config_path='./inc_configs/fer.yaml',
                 custom_dataset=FerDataset(root='../../benchmark/data/facial_expression_recognition/fer_calibration', size=(112, 112), toFP32=True, swapRB=True, scale=1./255, mean=0.5, std=0.5),
                 eval_dataset=FerDataset(root='../../benchmark/data/facial_expression_recognition/fer_evaluation', size=(112, 112), toFP32=True, swapRB=True, scale=1./255, mean=0.5, std=0.5),
                 metric=Accuracy),
)

if __name__ == '__main__':
    selected_models = []
    for i in range(1, len(sys.argv)):
        selected_models.append(sys.argv[i])
    if not selected_models:
        selected_models = list(models.keys())
    print('Models to be quantized: {}'.format(str(selected_models)))

    for selected_model_name in selected_models:
        q = models[selected_model_name]
        q.run()