|
#include "opencv2/opencv.hpp" |
|
|
|
#include <map> |
|
#include <vector> |
|
#include <string> |
|
#include <iostream> |
|
|
|
const std::map<std::string, int> str2backend{ |
|
{"opencv", cv::dnn::DNN_BACKEND_OPENCV}, {"cuda", cv::dnn::DNN_BACKEND_CUDA}, |
|
{"timvx", cv::dnn::DNN_BACKEND_TIMVX}, {"cann", cv::dnn::DNN_BACKEND_CANN} |
|
}; |
|
const std::map<std::string, int> str2target{ |
|
{"cpu", cv::dnn::DNN_TARGET_CPU}, {"cuda", cv::dnn::DNN_TARGET_CUDA}, |
|
{"npu", cv::dnn::DNN_TARGET_NPU}, {"cuda_fp16", cv::dnn::DNN_TARGET_CUDA_FP16} |
|
}; |
|
|
|
class YuNet |
|
{ |
|
public: |
|
YuNet(const std::string& model_path, |
|
const cv::Size& input_size = cv::Size(320, 320), |
|
float conf_threshold = 0.6f, |
|
float nms_threshold = 0.3f, |
|
int top_k = 5000, |
|
int backend_id = 0, |
|
int target_id = 0) |
|
: model_path_(model_path), input_size_(input_size), |
|
conf_threshold_(conf_threshold), nms_threshold_(nms_threshold), |
|
top_k_(top_k), backend_id_(backend_id), target_id_(target_id) |
|
{ |
|
model = cv::FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_); |
|
} |
|
|
|
|
|
|
|
void setInputSize(const cv::Size& input_size) |
|
{ |
|
input_size_ = input_size; |
|
model->setInputSize(input_size_); |
|
} |
|
|
|
cv::Mat infer(const cv::Mat image) |
|
{ |
|
cv::Mat res; |
|
model->detect(image, res); |
|
return res; |
|
} |
|
|
|
private: |
|
cv::Ptr<cv::FaceDetectorYN> model; |
|
|
|
std::string model_path_; |
|
cv::Size input_size_; |
|
float conf_threshold_; |
|
float nms_threshold_; |
|
int top_k_; |
|
int backend_id_; |
|
int target_id_; |
|
}; |
|
|
|
cv::Mat visualize(const cv::Mat& image, const cv::Mat& faces, float fps = -1.f) |
|
{ |
|
static cv::Scalar box_color{0, 255, 0}; |
|
static std::vector<cv::Scalar> landmark_color{ |
|
cv::Scalar(255, 0, 0), |
|
cv::Scalar( 0, 0, 255), |
|
cv::Scalar( 0, 255, 0), |
|
cv::Scalar(255, 0, 255), |
|
cv::Scalar( 0, 255, 255) |
|
}; |
|
static cv::Scalar text_color{0, 255, 0}; |
|
|
|
auto output_image = image.clone(); |
|
|
|
if (fps >= 0) |
|
{ |
|
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2); |
|
} |
|
|
|
for (int i = 0; i < faces.rows; ++i) |
|
{ |
|
|
|
int x1 = static_cast<int>(faces.at<float>(i, 0)); |
|
int y1 = static_cast<int>(faces.at<float>(i, 1)); |
|
int w = static_cast<int>(faces.at<float>(i, 2)); |
|
int h = static_cast<int>(faces.at<float>(i, 3)); |
|
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2); |
|
|
|
|
|
float conf = faces.at<float>(i, 14); |
|
cv::putText(output_image, cv::format("%.4f", conf), cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.5, text_color); |
|
|
|
|
|
for (int j = 0; j < landmark_color.size(); ++j) |
|
{ |
|
int x = static_cast<int>(faces.at<float>(i, 2*j+4)), y = static_cast<int>(faces.at<float>(i, 2*j+5)); |
|
cv::circle(output_image, cv::Point(x, y), 2, landmark_color[j], 2); |
|
} |
|
} |
|
return output_image; |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
cv::CommandLineParser parser(argc, argv, |
|
"{help h | | Print this message}" |
|
"{input i | | Set input to a certain image, omit if using camera}" |
|
"{model m | face_detection_yunet_2023mar.onnx | Set path to the model}" |
|
"{backend b | opencv | Set DNN backend}" |
|
"{target t | cpu | Set DNN target}" |
|
"{save s | false | Whether to save result image or not}" |
|
"{vis v | false | Whether to visualize result image or not}" |
|
|
|
"{conf_threshold | 0.9 | Set the minimum confidence for the model to identify a face. Filter out faces of conf < conf_threshold}" |
|
"{nms_threshold | 0.3 | Set the threshold to suppress overlapped boxes. Suppress boxes if IoU(box1, box2) >= nms_threshold, the one of higher score is kept.}" |
|
"{top_k | 5000 | Keep top_k bounding boxes before NMS. Set a lower value may help speed up postprocessing.}" |
|
); |
|
if (parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
std::string input_path = parser.get<std::string>("input"); |
|
std::string model_path = parser.get<std::string>("model"); |
|
std::string backend = parser.get<std::string>("backend"); |
|
std::string target = parser.get<std::string>("target"); |
|
bool save_flag = parser.get<bool>("save"); |
|
bool vis_flag = parser.get<bool>("vis"); |
|
|
|
|
|
float conf_threshold = parser.get<float>("conf_threshold"); |
|
float nms_threshold = parser.get<float>("nms_threshold"); |
|
int top_k = parser.get<int>("top_k"); |
|
const int backend_id = str2backend.at(backend); |
|
const int target_id = str2target.at(target); |
|
|
|
|
|
YuNet model(model_path, cv::Size(320, 320), conf_threshold, nms_threshold, top_k, backend_id, target_id); |
|
|
|
|
|
if (!input_path.empty()) |
|
{ |
|
auto image = cv::imread(input_path); |
|
|
|
|
|
model.setInputSize(image.size()); |
|
auto faces = model.infer(image); |
|
|
|
|
|
std::cout << cv::format("%d faces detected:\n", faces.rows); |
|
for (int i = 0; i < faces.rows; ++i) |
|
{ |
|
int x1 = static_cast<int>(faces.at<float>(i, 0)); |
|
int y1 = static_cast<int>(faces.at<float>(i, 1)); |
|
int w = static_cast<int>(faces.at<float>(i, 2)); |
|
int h = static_cast<int>(faces.at<float>(i, 3)); |
|
float conf = faces.at<float>(i, 14); |
|
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f\n", i, x1, y1, w, h, conf); |
|
} |
|
|
|
|
|
if (save_flag || vis_flag) |
|
{ |
|
auto res_image = visualize(image, faces); |
|
if (save_flag) |
|
{ |
|
std::cout << "Results are saved to result.jpg\n"; |
|
cv::imwrite("result.jpg", res_image); |
|
} |
|
if (vis_flag) |
|
{ |
|
cv::namedWindow(input_path, cv::WINDOW_AUTOSIZE); |
|
cv::imshow(input_path, res_image); |
|
cv::waitKey(0); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
int device_id = 0; |
|
auto cap = cv::VideoCapture(device_id); |
|
int w = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH)); |
|
int h = static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT)); |
|
model.setInputSize(cv::Size(w, h)); |
|
|
|
auto tick_meter = cv::TickMeter(); |
|
cv::Mat frame; |
|
while (cv::waitKey(1) < 0) |
|
{ |
|
bool has_frame = cap.read(frame); |
|
if (!has_frame) |
|
{ |
|
std::cout << "No frames grabbed! Exiting ...\n"; |
|
break; |
|
} |
|
|
|
|
|
tick_meter.start(); |
|
cv::Mat faces = model.infer(frame); |
|
tick_meter.stop(); |
|
|
|
|
|
auto res_image = visualize(frame, faces, (float)tick_meter.getFPS()); |
|
|
|
cv::imshow("YuNet Demo", res_image); |
|
|
|
tick_meter.reset(); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|