|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from sface import SFace |
|
|
|
sys.path.append('../face_detection_yunet') |
|
from yunet import YuNet |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser( |
|
description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)") |
|
parser.add_argument('--target', '-t', type=str, |
|
help='Usage: Set path to the input image 1 (target face).') |
|
parser.add_argument('--query', '-q', type=str, |
|
help='Usage: Set path to the input image 2 (query).') |
|
parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021dec.onnx', |
|
help='Usage: Set model path, defaults to face_recognition_sface_2021dec.onnx.') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0, |
|
help='Usage: Distance type. \'0\': cosine, \'1\': norm_l1. Defaults to \'0\'') |
|
parser.add_argument('--save', '-s', action='store_true', |
|
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.') |
|
parser.add_argument('--vis', '-v', action='store_true', |
|
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.') |
|
args = parser.parse_args() |
|
|
|
def visualize(img1, faces1, img2, faces2, matches, scores, target_size=[512, 512]): |
|
out1 = img1.copy() |
|
out2 = img2.copy() |
|
matched_box_color = (0, 255, 0) |
|
mismatched_box_color = (0, 0, 255) |
|
|
|
|
|
padded_out1 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8) |
|
h1, w1, _ = out1.shape |
|
ratio1 = min(target_size[0] / out1.shape[0], target_size[1] / out1.shape[1]) |
|
new_h1 = int(h1 * ratio1) |
|
new_w1 = int(w1 * ratio1) |
|
resized_out1 = cv.resize(out1, (new_w1, new_h1), interpolation=cv.INTER_LINEAR).astype(np.float32) |
|
top = max(0, target_size[0] - new_h1) // 2 |
|
bottom = top + new_h1 |
|
left = max(0, target_size[1] - new_w1) // 2 |
|
right = left + new_w1 |
|
padded_out1[top : bottom, left : right] = resized_out1 |
|
|
|
|
|
bbox1 = faces1[0][:4] * ratio1 |
|
x, y, w, h = bbox1.astype(np.int32) |
|
cv.rectangle(padded_out1, (x + left, y + top), (x + left + w, y + top + h), matched_box_color, 2) |
|
|
|
|
|
padded_out2 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8) |
|
h2, w2, _ = out2.shape |
|
ratio2 = min(target_size[0] / out2.shape[0], target_size[1] / out2.shape[1]) |
|
new_h2 = int(h2 * ratio2) |
|
new_w2 = int(w2 * ratio2) |
|
resized_out2 = cv.resize(out2, (new_w2, new_h2), interpolation=cv.INTER_LINEAR).astype(np.float32) |
|
top = max(0, target_size[0] - new_h2) // 2 |
|
bottom = top + new_h2 |
|
left = max(0, target_size[1] - new_w2) // 2 |
|
right = left + new_w2 |
|
padded_out2[top : bottom, left : right] = resized_out2 |
|
|
|
|
|
assert faces2.shape[0] == len(matches), "number of faces2 needs to match matches" |
|
assert len(matches) == len(scores), "number of matches needs to match number of scores" |
|
for index, match in enumerate(matches): |
|
bbox2 = faces2[index][:4] * ratio2 |
|
x, y, w, h = bbox2.astype(np.int32) |
|
box_color = matched_box_color if match else mismatched_box_color |
|
cv.rectangle(padded_out2, (x + left, y + top), (x + left + w, y + top + h), box_color, 2) |
|
|
|
score = scores[index] |
|
text_color = matched_box_color if match else mismatched_box_color |
|
cv.putText(padded_out2, "{:.2f}".format(score), (x + left, y + top - 5), cv.FONT_HERSHEY_DUPLEX, 0.4, text_color) |
|
|
|
return np.concatenate([padded_out1, padded_out2], axis=1) |
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
recognizer = SFace(modelPath=args.model, |
|
disType=args.dis_type, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2023mar.onnx', |
|
inputSize=[320, 320], |
|
confThreshold=0.9, |
|
nmsThreshold=0.3, |
|
topK=5000, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
img1 = cv.imread(args.target) |
|
img2 = cv.imread(args.query) |
|
|
|
|
|
detector.setInputSize([img1.shape[1], img1.shape[0]]) |
|
faces1 = detector.infer(img1) |
|
assert faces1.shape[0] > 0, 'Cannot find a face in {}'.format(args.target) |
|
detector.setInputSize([img2.shape[1], img2.shape[0]]) |
|
faces2 = detector.infer(img2) |
|
assert faces2.shape[0] > 0, 'Cannot find a face in {}'.format(args.query) |
|
|
|
|
|
scores = [] |
|
matches = [] |
|
for face in faces2: |
|
result = recognizer.match(img1, faces1[0][:-1], img2, face[:-1]) |
|
scores.append(result[0]) |
|
matches.append(result[1]) |
|
|
|
|
|
image = visualize(img1, faces1, img2, faces2, matches, scores) |
|
|
|
|
|
if args.save: |
|
print('Resutls saved to result.jpg\n') |
|
cv.imwrite('result.jpg', image) |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow("SFace Demo", cv.WINDOW_AUTOSIZE) |
|
cv.imshow("SFace Demo", image) |
|
cv.waitKey(0) |
|
|