ytfeng's picture
bump opencv version to 4.10.0 (#260)
167c85e
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import sys
import argparse
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from sface import SFace
sys.path.append('../face_detection_yunet')
from yunet import YuNet
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(
description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)")
parser.add_argument('--target', '-t', type=str,
help='Usage: Set path to the input image 1 (target face).')
parser.add_argument('--query', '-q', type=str,
help='Usage: Set path to the input image 2 (query).')
parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021dec.onnx',
help='Usage: Set model path, defaults to face_recognition_sface_2021dec.onnx.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0,
help='Usage: Distance type. \'0\': cosine, \'1\': norm_l1. Defaults to \'0\'')
parser.add_argument('--save', '-s', action='store_true',
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()
def visualize(img1, faces1, img2, faces2, matches, scores, target_size=[512, 512]): # target_size: (h, w)
out1 = img1.copy()
out2 = img2.copy()
matched_box_color = (0, 255, 0) # BGR
mismatched_box_color = (0, 0, 255) # BGR
# Resize to 256x256 with the same aspect ratio
padded_out1 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8)
h1, w1, _ = out1.shape
ratio1 = min(target_size[0] / out1.shape[0], target_size[1] / out1.shape[1])
new_h1 = int(h1 * ratio1)
new_w1 = int(w1 * ratio1)
resized_out1 = cv.resize(out1, (new_w1, new_h1), interpolation=cv.INTER_LINEAR).astype(np.float32)
top = max(0, target_size[0] - new_h1) // 2
bottom = top + new_h1
left = max(0, target_size[1] - new_w1) // 2
right = left + new_w1
padded_out1[top : bottom, left : right] = resized_out1
# Draw bbox
bbox1 = faces1[0][:4] * ratio1
x, y, w, h = bbox1.astype(np.int32)
cv.rectangle(padded_out1, (x + left, y + top), (x + left + w, y + top + h), matched_box_color, 2)
# Resize to 256x256 with the same aspect ratio
padded_out2 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8)
h2, w2, _ = out2.shape
ratio2 = min(target_size[0] / out2.shape[0], target_size[1] / out2.shape[1])
new_h2 = int(h2 * ratio2)
new_w2 = int(w2 * ratio2)
resized_out2 = cv.resize(out2, (new_w2, new_h2), interpolation=cv.INTER_LINEAR).astype(np.float32)
top = max(0, target_size[0] - new_h2) // 2
bottom = top + new_h2
left = max(0, target_size[1] - new_w2) // 2
right = left + new_w2
padded_out2[top : bottom, left : right] = resized_out2
# Draw bbox
assert faces2.shape[0] == len(matches), "number of faces2 needs to match matches"
assert len(matches) == len(scores), "number of matches needs to match number of scores"
for index, match in enumerate(matches):
bbox2 = faces2[index][:4] * ratio2
x, y, w, h = bbox2.astype(np.int32)
box_color = matched_box_color if match else mismatched_box_color
cv.rectangle(padded_out2, (x + left, y + top), (x + left + w, y + top + h), box_color, 2)
score = scores[index]
text_color = matched_box_color if match else mismatched_box_color
cv.putText(padded_out2, "{:.2f}".format(score), (x + left, y + top - 5), cv.FONT_HERSHEY_DUPLEX, 0.4, text_color)
return np.concatenate([padded_out1, padded_out2], axis=1)
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# Instantiate SFace for face recognition
recognizer = SFace(modelPath=args.model,
disType=args.dis_type,
backendId=backend_id,
targetId=target_id)
# Instantiate YuNet for face detection
detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2023mar.onnx',
inputSize=[320, 320],
confThreshold=0.9,
nmsThreshold=0.3,
topK=5000,
backendId=backend_id,
targetId=target_id)
img1 = cv.imread(args.target)
img2 = cv.imread(args.query)
# Detect faces
detector.setInputSize([img1.shape[1], img1.shape[0]])
faces1 = detector.infer(img1)
assert faces1.shape[0] > 0, 'Cannot find a face in {}'.format(args.target)
detector.setInputSize([img2.shape[1], img2.shape[0]])
faces2 = detector.infer(img2)
assert faces2.shape[0] > 0, 'Cannot find a face in {}'.format(args.query)
# Match
scores = []
matches = []
for face in faces2:
result = recognizer.match(img1, faces1[0][:-1], img2, face[:-1])
scores.append(result[0])
matches.append(result[1])
# Draw results
image = visualize(img1, faces1, img2, faces2, matches, scores)
# Save results if save is true
if args.save:
print('Resutls saved to result.jpg\n')
cv.imwrite('result.jpg', image)
# Visualize results in a new window
if args.vis:
cv.namedWindow("SFace Demo", cv.WINDOW_AUTOSIZE)
cv.imshow("SFace Demo", image)
cv.waitKey(0)