|
import sys |
|
import argparse |
|
import copy |
|
import datetime |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from facial_fer_model import FacialExpressionRecog |
|
|
|
sys.path.append('../face_detection_yunet') |
|
from yunet import YuNet |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser(description='Facial Expression Recognition') |
|
parser.add_argument('--input', '-i', type=str, |
|
help='Path to the input image. Omit for using default camera.') |
|
parser.add_argument('--model', '-m', type=str, default='./facial_expression_recognition_mobilefacenet_2022july.onnx', |
|
help='Path to the facial expression recognition model.') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--save', '-s', action='store_true', |
|
help='Specify to save results. This flag is invalid when using camera.') |
|
parser.add_argument('--vis', '-v', action='store_true', |
|
help='Specify to open a window for result visualization. This flag is invalid when using camera.') |
|
args = parser.parse_args() |
|
|
|
def visualize(image, det_res, fer_res, box_color=(0, 255, 0), text_color=(0, 0, 255)): |
|
|
|
print('%s %3d faces detected.' % (datetime.datetime.now(), len(det_res))) |
|
|
|
output = image.copy() |
|
landmark_color = [ |
|
(255, 0, 0), |
|
(0, 0, 255), |
|
(0, 255, 0), |
|
(255, 0, 255), |
|
(0, 255, 255) |
|
] |
|
|
|
for ind, (det, fer_type) in enumerate(zip(det_res, fer_res)): |
|
bbox = det[0:4].astype(np.int32) |
|
fer_type = FacialExpressionRecog.getDesc(fer_type) |
|
print("Face %2d: %d %d %d %d %s." % (ind, bbox[0], bbox[1], bbox[0]+bbox[2], bbox[1]+bbox[3], fer_type)) |
|
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2) |
|
cv.putText(output, fer_type, (bbox[0], bbox[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, text_color) |
|
landmarks = det[4:14].astype(np.int32).reshape((5, 2)) |
|
for idx, landmark in enumerate(landmarks): |
|
cv.circle(output, landmark, 2, landmark_color[idx], 2) |
|
return output |
|
|
|
|
|
def process(detect_model, fer_model, frame): |
|
h, w, _ = frame.shape |
|
detect_model.setInputSize([w, h]) |
|
dets = detect_model.infer(frame) |
|
|
|
if dets is None: |
|
return False, None, None |
|
|
|
fer_res = np.zeros(0, dtype=np.int8) |
|
for face_points in dets: |
|
fer_res = np.concatenate((fer_res, fer_model.infer(frame, face_points[:-1])), axis=0) |
|
return True, dets, fer_res |
|
|
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
detect_model = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2023mar.onnx') |
|
|
|
fer_model = FacialExpressionRecog(modelPath=args.model, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
|
|
if args.input is not None: |
|
image = cv.imread(args.input) |
|
|
|
|
|
status, dets, fer_res = process(detect_model, fer_model, image) |
|
|
|
if status: |
|
|
|
image = visualize(image, dets, fer_res) |
|
|
|
|
|
if args.save: |
|
cv.imwrite('result.jpg', image) |
|
print('Results saved to result.jpg\n') |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(args.input, image) |
|
cv.waitKey(0) |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
|
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
|
|
status, dets, fer_res = process(detect_model, fer_model, frame) |
|
|
|
if status: |
|
|
|
frame = visualize(frame, dets, fer_res) |
|
|
|
|
|
cv.imshow('FER Demo', frame) |
|
|