Wanli
clip palm bbox to (w,h) (#182)
fc71ef8
import numpy as np
import cv2 as cv
class MPHandPose:
def __init__(self, modelPath, confThreshold=0.8, backendId=0, targetId=0):
self.model_path = modelPath
self.conf_threshold = confThreshold
self.backend_id = backendId
self.target_id = targetId
self.input_size = np.array([224, 224]) # wh
self.PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2]
self.PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0
self.PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2
self.PALM_BOX_PRE_SHIFT_VECTOR = [0, 0]
self.PALM_BOX_PRE_ENLARGE_FACTOR = 4
self.PALM_BOX_SHIFT_VECTOR = [0, -0.4]
self.PALM_BOX_ENLARGE_FACTOR = 3
self.HAND_BOX_SHIFT_VECTOR = [0, -0.1]
self.HAND_BOX_ENLARGE_FACTOR = 1.65
self.model = cv.dnn.readNet(self.model_path)
self.model.setPreferableBackend(self.backend_id)
self.model.setPreferableTarget(self.target_id)
@property
def name(self):
return self.__class__.__name__
def setBackendAndTarget(self, backendId, targetId):
self.backend_id = backendId
self.target_id = targetId
self.model.setPreferableBackend(self.backend_id)
self.model.setPreferableTarget(self.target_id)
def _cropAndPadFromPalm(self, image, palm_bbox, for_rotation = False):
# shift bounding box
wh_palm_bbox = palm_bbox[1] - palm_bbox[0]
if for_rotation:
shift_vector = self.PALM_BOX_PRE_SHIFT_VECTOR
else:
shift_vector = self.PALM_BOX_SHIFT_VECTOR
shift_vector = shift_vector * wh_palm_bbox
palm_bbox = palm_bbox + shift_vector
# enlarge bounding box
center_palm_bbox = np.sum(palm_bbox, axis=0) / 2
wh_palm_bbox = palm_bbox[1] - palm_bbox[0]
if for_rotation:
enlarge_scale = self.PALM_BOX_PRE_ENLARGE_FACTOR
else:
enlarge_scale = self.PALM_BOX_ENLARGE_FACTOR
new_half_size = wh_palm_bbox * enlarge_scale / 2
palm_bbox = np.array([
center_palm_bbox - new_half_size,
center_palm_bbox + new_half_size])
palm_bbox = palm_bbox.astype(np.int32)
palm_bbox[:, 0] = np.clip(palm_bbox[:, 0], 0, image.shape[1])
palm_bbox[:, 1] = np.clip(palm_bbox[:, 1], 0, image.shape[0])
# crop to the size of interest
image = image[palm_bbox[0][1]:palm_bbox[1][1], palm_bbox[0][0]:palm_bbox[1][0], :]
# pad to ensure conner pixels won't be cropped
if for_rotation:
side_len = np.linalg.norm(image.shape[:2])
else:
side_len = max(image.shape[:2])
side_len = int(side_len)
pad_h = side_len - image.shape[0]
pad_w = side_len - image.shape[1]
left = pad_w // 2
top = pad_h // 2
right = pad_w - left
bottom = pad_h - top
image = cv.copyMakeBorder(image, top, bottom, left, right, cv.BORDER_CONSTANT, None, (0, 0, 0))
bias = palm_bbox[0] - [left, top]
return image, palm_bbox, bias
def _preprocess(self, image, palm):
'''
Rotate input for inference.
Parameters:
image - input image of BGR channel order
palm_bbox - palm bounding box found in image of format [[x1, y1], [x2, y2]] (top-left and bottom-right points)
palm_landmarks - 7 landmarks (5 finger base points, 2 palm base points) of shape [7, 2]
Returns:
rotated_hand - rotated hand image for inference
rotate_palm_bbox - palm box of interest range
angle - rotate angle for hand
rotation_matrix - matrix for rotation and de-rotation
pad_bias - pad pixels of interest range
'''
# crop and pad image to interest range
pad_bias = np.array([0, 0], dtype=np.int32) # left, top
palm_bbox = palm[0:4].reshape(2, 2)
image, palm_bbox, bias = self._cropAndPadFromPalm(image, palm_bbox, True)
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
pad_bias += bias
# Rotate input to have vertically oriented hand image
# compute rotation
palm_bbox -= pad_bias
palm_landmarks = palm[4:18].reshape(7, 2) - pad_bias
p1 = palm_landmarks[self.PALM_LANDMARKS_INDEX_OF_PALM_BASE]
p2 = palm_landmarks[self.PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]
radians = np.pi / 2 - np.arctan2(-(p2[1] - p1[1]), p2[0] - p1[0])
radians = radians - 2 * np.pi * np.floor((radians + np.pi) / (2 * np.pi))
angle = np.rad2deg(radians)
# get bbox center
center_palm_bbox = np.sum(palm_bbox, axis=0) / 2
# get rotation matrix
rotation_matrix = cv.getRotationMatrix2D(center_palm_bbox, angle, 1.0)
# get rotated image
rotated_image = cv.warpAffine(image, rotation_matrix, (image.shape[1], image.shape[0]))
# get bounding boxes from rotated palm landmarks
homogeneous_coord = np.c_[palm_landmarks, np.ones(palm_landmarks.shape[0])]
rotated_palm_landmarks = np.array([
np.dot(homogeneous_coord, rotation_matrix[0]),
np.dot(homogeneous_coord, rotation_matrix[1])])
# get landmark bounding box
rotated_palm_bbox = np.array([
np.amin(rotated_palm_landmarks, axis=1),
np.amax(rotated_palm_landmarks, axis=1)]) # [top-left, bottom-right]
crop, rotated_palm_bbox, _ = self._cropAndPadFromPalm(rotated_image, rotated_palm_bbox)
blob = cv.resize(crop, dsize=self.input_size, interpolation=cv.INTER_AREA).astype(np.float32)
blob = blob / 255.
return blob[np.newaxis, :, :, :], rotated_palm_bbox, angle, rotation_matrix, pad_bias
def infer(self, image, palm):
# Preprocess
input_blob, rotated_palm_bbox, angle, rotation_matrix, pad_bias = self._preprocess(image, palm)
# Forward
self.model.setInput(input_blob)
output_blob = self.model.forward(self.model.getUnconnectedOutLayersNames())
# Postprocess
results = self._postprocess(output_blob, rotated_palm_bbox, angle, rotation_matrix, pad_bias)
return results # [bbox_coords, landmarks_coords, conf]
def _postprocess(self, blob, rotated_palm_bbox, angle, rotation_matrix, pad_bias):
landmarks, conf, handedness, landmarks_word = blob
conf = conf[0][0]
if conf < self.conf_threshold:
return None
landmarks = landmarks[0].reshape(-1, 3) # shape: (1, 63) -> (21, 3)
landmarks_word = landmarks_word[0].reshape(-1, 3) # shape: (1, 63) -> (21, 3)
# transform coords back to the input coords
wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
scale_factor = wh_rotated_palm_bbox / self.input_size
landmarks[:, :2] = (landmarks[:, :2] - self.input_size / 2) * max(scale_factor)
landmarks[:, 2] = landmarks[:, 2] * max(scale_factor) # depth scaling
coords_rotation_matrix = cv.getRotationMatrix2D((0, 0), angle, 1.0)
rotated_landmarks = np.dot(landmarks[:, :2], coords_rotation_matrix[:, :2])
rotated_landmarks = np.c_[rotated_landmarks, landmarks[:, 2]]
rotated_landmarks_world = np.dot(landmarks_word[:, :2], coords_rotation_matrix[:, :2])
rotated_landmarks_world = np.c_[rotated_landmarks_world, landmarks_word[:, 2]]
# invert rotation
rotation_component = np.array([
[rotation_matrix[0][0], rotation_matrix[1][0]],
[rotation_matrix[0][1], rotation_matrix[1][1]]])
translation_component = np.array([
rotation_matrix[0][2], rotation_matrix[1][2]])
inverted_translation = np.array([
-np.dot(rotation_component[0], translation_component),
-np.dot(rotation_component[1], translation_component)])
inverse_rotation_matrix = np.c_[rotation_component, inverted_translation]
# get box center
center = np.append(np.sum(rotated_palm_bbox, axis=0) / 2, 1)
original_center = np.array([
np.dot(center, inverse_rotation_matrix[0]),
np.dot(center, inverse_rotation_matrix[1])])
landmarks[:, :2] = rotated_landmarks[:, :2] + original_center + pad_bias
# get bounding box from rotated_landmarks
bbox = np.array([
np.amin(landmarks[:, :2], axis=0),
np.amax(landmarks[:, :2], axis=0)]) # [top-left, bottom-right]
# shift bounding box
wh_bbox = bbox[1] - bbox[0]
shift_vector = self.HAND_BOX_SHIFT_VECTOR * wh_bbox
bbox = bbox + shift_vector
# enlarge bounding box
center_bbox = np.sum(bbox, axis=0) / 2
wh_bbox = bbox[1] - bbox[0]
new_half_size = wh_bbox * self.HAND_BOX_ENLARGE_FACTOR / 2
bbox = np.array([
center_bbox - new_half_size,
center_bbox + new_half_size])
# [0: 4]: hand bounding box found in image of format [x1, y1, x2, y2] (top-left and bottom-right points)
# [4: 67]: screen landmarks with format [x1, y1, z1, x2, y2 ... x21, y21, z21], z value is relative to WRIST
# [67: 130]: world landmarks with format [x1, y1, z1, x2, y2 ... x21, y21, z21], 3D metric x, y, z coordinate
# [130]: handedness, (left)[0, 1](right) hand
# [131]: confidence
return np.r_[bbox.reshape(-1), landmarks.reshape(-1), rotated_landmarks_world.reshape(-1), handedness[0][0], conf]