|
#include "opencv2/opencv.hpp" |
|
|
|
#include <map> |
|
#include <vector> |
|
#include <string> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace dnn; |
|
|
|
std::vector<std::pair<int, int>> backend_target_pairs = { |
|
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU}, |
|
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA}, |
|
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16}, |
|
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU}, |
|
{DNN_BACKEND_CANN, DNN_TARGET_NPU} |
|
}; |
|
|
|
class PPHS |
|
{ |
|
private: |
|
Net model; |
|
string modelPath; |
|
|
|
Scalar imageMean = Scalar(0.5,0.5,0.5); |
|
Scalar imageStd = Scalar(0.5,0.5,0.5); |
|
Size modelInputSize = Size(192, 192); |
|
Size currentSize; |
|
|
|
const String inputNames = "x"; |
|
const String outputNames = "save_infer_model/scale_0.tmp_1"; |
|
|
|
int backend_id; |
|
int target_id; |
|
|
|
public: |
|
PPHS(const string& modelPath, |
|
int backend_id = 0, |
|
int target_id = 0) |
|
: modelPath(modelPath), backend_id(backend_id), target_id(target_id) |
|
{ |
|
this->model = readNet(modelPath); |
|
this->model.setPreferableBackend(backend_id); |
|
this->model.setPreferableTarget(target_id); |
|
} |
|
|
|
Mat preprocess(const Mat image) |
|
{ |
|
this->currentSize = image.size(); |
|
Mat preprocessed = Mat::zeros(this->modelInputSize, image.type()); |
|
resize(image, preprocessed, this->modelInputSize); |
|
|
|
|
|
preprocessed.convertTo(preprocessed, CV_32F, 1.0 / 255.0); |
|
preprocessed -= imageMean; |
|
preprocessed /= imageStd; |
|
|
|
return blobFromImage(preprocessed);; |
|
} |
|
|
|
Mat infer(const Mat image) |
|
{ |
|
Mat inputBlob = preprocess(image); |
|
|
|
this->model.setInput(inputBlob, this->inputNames); |
|
Mat outputBlob = this->model.forward(this->outputNames); |
|
|
|
return postprocess(outputBlob); |
|
} |
|
|
|
Mat postprocess(Mat image) |
|
{ |
|
reduceArgMax(image,image,1); |
|
image = image.reshape(1,image.size[2]); |
|
image.convertTo(image, CV_32F); |
|
resize(image, image, this->currentSize, 0, 0, INTER_LINEAR); |
|
image.convertTo(image, CV_8U); |
|
|
|
return image; |
|
} |
|
|
|
}; |
|
|
|
|
|
vector<uint8_t> getColorMapList(int num_classes) { |
|
num_classes += 1; |
|
|
|
vector<uint8_t> cm(num_classes*3, 0); |
|
|
|
int lab, j; |
|
|
|
for (int i = 0; i < num_classes; ++i) { |
|
lab = i; |
|
j = 0; |
|
|
|
while(lab){ |
|
cm[i] |= (((lab >> 0) & 1) << (7 - j)); |
|
cm[i+num_classes] |= (((lab >> 1) & 1) << (7 - j)); |
|
cm[i+2*num_classes] |= (((lab >> 2) & 1) << (7 - j)); |
|
++j; |
|
lab >>= 3; |
|
} |
|
|
|
} |
|
|
|
cm.erase(cm.begin(), cm.begin()+3); |
|
|
|
return cm; |
|
}; |
|
|
|
Mat visualize(const Mat& image, const Mat& result, float fps = -1.f, float weight = 0.4) |
|
{ |
|
const Scalar& text_color = Scalar(0, 255, 0); |
|
Mat output_image = image.clone(); |
|
|
|
vector<uint8_t> color_map = getColorMapList(256); |
|
|
|
Mat cmm(color_map); |
|
|
|
cmm = cmm.reshape(1,{3,256}); |
|
|
|
if (fps >= 0) |
|
{ |
|
putText(output_image, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2); |
|
} |
|
|
|
Mat c1, c2, c3; |
|
|
|
LUT(result, cmm.row(0), c1); |
|
LUT(result, cmm.row(1), c2); |
|
LUT(result, cmm.row(2), c3); |
|
|
|
Mat pseudo_img; |
|
merge(std::vector<Mat>{c1,c2,c3}, pseudo_img); |
|
|
|
addWeighted(output_image, weight, pseudo_img, 1 - weight, 0, output_image); |
|
|
|
return output_image; |
|
}; |
|
|
|
string keys = |
|
"{ help h | | Print help message. }" |
|
"{ model m | human_segmentation_pphumanseg_2023mar.onnx | Usage: Path to the model, defaults to human_segmentation_pphumanseg_2023mar.onnx }" |
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" |
|
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n" |
|
"0: (default) OpenCV implementation + CPU,\n" |
|
"1: CUDA + GPU (CUDA),\n" |
|
"2: CUDA + GPU (CUDA FP16),\n" |
|
"3: TIM-VX + NPU,\n" |
|
"4: CANN + NPU}" |
|
"{ save s | false | Specify to save results.}" |
|
"{ vis v | true | Specify to open a window for result visualization.}" |
|
; |
|
|
|
|
|
int main(int argc, char** argv) |
|
{ |
|
CommandLineParser parser(argc, argv, keys); |
|
|
|
parser.about("Human Segmentation"); |
|
if (parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
string modelPath = parser.get<string>("model"); |
|
string inputPath = parser.get<string>("input"); |
|
uint8_t backendTarget = parser.get<uint8_t>("backend_target"); |
|
bool saveFlag = parser.get<bool>("save"); |
|
bool visFlag = parser.get<bool>("vis"); |
|
|
|
if (modelPath.empty()) |
|
CV_Error(Error::StsError, "Model file " + modelPath + " not found"); |
|
|
|
PPHS humanSegmentationModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second); |
|
|
|
VideoCapture cap; |
|
if (!inputPath.empty()) |
|
cap.open(samples::findFile(inputPath)); |
|
else |
|
cap.open(0); |
|
|
|
if (!cap.isOpened()) |
|
CV_Error(Error::StsError, "Cannot opend video or file"); |
|
|
|
Mat frame; |
|
Mat result; |
|
static const std::string kWinName = "Human Segmentation Demo"; |
|
TickMeter tm; |
|
|
|
while (waitKey(1) < 0) |
|
{ |
|
cap >> frame; |
|
|
|
if (frame.empty()) |
|
{ |
|
if(inputPath.empty()) |
|
cout << "Frame is empty" << endl; |
|
break; |
|
} |
|
|
|
tm.start(); |
|
result = humanSegmentationModel.infer(frame); |
|
tm.stop(); |
|
|
|
Mat res_frame = visualize(frame, result, tm.getFPS()); |
|
|
|
if(visFlag || inputPath.empty()) |
|
{ |
|
imshow(kWinName, res_frame); |
|
if(!inputPath.empty()) |
|
waitKey(0); |
|
} |
|
if(saveFlag) |
|
{ |
|
cout << "Results are saved to result.jpg" << endl; |
|
|
|
imwrite("result.jpg", res_frame); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|