DaniAffCH's picture
C++ Demo - Human Segmentation (#243)
e8dca96
#include "opencv2/opencv.hpp"
#include <map>
#include <vector>
#include <string>
#include <iostream>
using namespace std;
using namespace cv;
using namespace dnn;
std::vector<std::pair<int, int>> backend_target_pairs = {
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
};
class PPHS
{
private:
Net model;
string modelPath;
Scalar imageMean = Scalar(0.5,0.5,0.5);
Scalar imageStd = Scalar(0.5,0.5,0.5);
Size modelInputSize = Size(192, 192);
Size currentSize;
const String inputNames = "x";
const String outputNames = "save_infer_model/scale_0.tmp_1";
int backend_id;
int target_id;
public:
PPHS(const string& modelPath,
int backend_id = 0,
int target_id = 0)
: modelPath(modelPath), backend_id(backend_id), target_id(target_id)
{
this->model = readNet(modelPath);
this->model.setPreferableBackend(backend_id);
this->model.setPreferableTarget(target_id);
}
Mat preprocess(const Mat image)
{
this->currentSize = image.size();
Mat preprocessed = Mat::zeros(this->modelInputSize, image.type());
resize(image, preprocessed, this->modelInputSize);
// image normalization
preprocessed.convertTo(preprocessed, CV_32F, 1.0 / 255.0);
preprocessed -= imageMean;
preprocessed /= imageStd;
return blobFromImage(preprocessed);;
}
Mat infer(const Mat image)
{
Mat inputBlob = preprocess(image);
this->model.setInput(inputBlob, this->inputNames);
Mat outputBlob = this->model.forward(this->outputNames);
return postprocess(outputBlob);
}
Mat postprocess(Mat image)
{
reduceArgMax(image,image,1);
image = image.reshape(1,image.size[2]);
image.convertTo(image, CV_32F);
resize(image, image, this->currentSize, 0, 0, INTER_LINEAR);
image.convertTo(image, CV_8U);
return image;
}
};
vector<uint8_t> getColorMapList(int num_classes) {
num_classes += 1;
vector<uint8_t> cm(num_classes*3, 0);
int lab, j;
for (int i = 0; i < num_classes; ++i) {
lab = i;
j = 0;
while(lab){
cm[i] |= (((lab >> 0) & 1) << (7 - j));
cm[i+num_classes] |= (((lab >> 1) & 1) << (7 - j));
cm[i+2*num_classes] |= (((lab >> 2) & 1) << (7 - j));
++j;
lab >>= 3;
}
}
cm.erase(cm.begin(), cm.begin()+3);
return cm;
};
Mat visualize(const Mat& image, const Mat& result, float fps = -1.f, float weight = 0.4)
{
const Scalar& text_color = Scalar(0, 255, 0);
Mat output_image = image.clone();
vector<uint8_t> color_map = getColorMapList(256);
Mat cmm(color_map);
cmm = cmm.reshape(1,{3,256});
if (fps >= 0)
{
putText(output_image, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2);
}
Mat c1, c2, c3;
LUT(result, cmm.row(0), c1);
LUT(result, cmm.row(1), c2);
LUT(result, cmm.row(2), c3);
Mat pseudo_img;
merge(std::vector<Mat>{c1,c2,c3}, pseudo_img);
addWeighted(output_image, weight, pseudo_img, 1 - weight, 0, output_image);
return output_image;
};
string keys =
"{ help h | | Print help message. }"
"{ model m | human_segmentation_pphumanseg_2023mar.onnx | Usage: Path to the model, defaults to human_segmentation_pphumanseg_2023mar.onnx }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n"
"0: (default) OpenCV implementation + CPU,\n"
"1: CUDA + GPU (CUDA),\n"
"2: CUDA + GPU (CUDA FP16),\n"
"3: TIM-VX + NPU,\n"
"4: CANN + NPU}"
"{ save s | false | Specify to save results.}"
"{ vis v | true | Specify to open a window for result visualization.}"
;
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
parser.about("Human Segmentation");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string modelPath = parser.get<string>("model");
string inputPath = parser.get<string>("input");
uint8_t backendTarget = parser.get<uint8_t>("backend_target");
bool saveFlag = parser.get<bool>("save");
bool visFlag = parser.get<bool>("vis");
if (modelPath.empty())
CV_Error(Error::StsError, "Model file " + modelPath + " not found");
PPHS humanSegmentationModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second);
VideoCapture cap;
if (!inputPath.empty())
cap.open(samples::findFile(inputPath));
else
cap.open(0);
if (!cap.isOpened())
CV_Error(Error::StsError, "Cannot opend video or file");
Mat frame;
Mat result;
static const std::string kWinName = "Human Segmentation Demo";
TickMeter tm;
while (waitKey(1) < 0)
{
cap >> frame;
if (frame.empty())
{
if(inputPath.empty())
cout << "Frame is empty" << endl;
break;
}
tm.start();
result = humanSegmentationModel.infer(frame);
tm.stop();
Mat res_frame = visualize(frame, result, tm.getFPS());
if(visFlag || inputPath.empty())
{
imshow(kWinName, res_frame);
if(!inputPath.empty())
waitKey(0);
}
if(saveFlag)
{
cout << "Results are saved to result.jpg" << endl;
imwrite("result.jpg", res_frame);
}
}
return 0;
}