ytfeng's picture
bump opencv version to 4.10.0 (#260)
167c85e
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import argparse
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from pphumanseg import PPHumanSeg
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(description='PPHumanSeg (https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.2/contrib/PP-HumanSeg)')
parser.add_argument('--input', '-i', type=str,
help='Usage: Set input path to a certain image, omit if using camera.')
parser.add_argument('--model', '-m', type=str, default='human_segmentation_pphumanseg_2023mar.onnx',
help='Usage: Set model path, defaults to human_segmentation_pphumanseg_2023mar.onnx.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--save', '-s', action='store_true',
help='Usage: Specify to save a file with results. Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()
def get_color_map_list(num_classes):
"""
Returns the color map for visualizing the segmentation mask,
which can support arbitrary number of classes.
Args:
num_classes (int): Number of classes.
Returns:
(list). The color map.
"""
num_classes += 1
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
color_map = color_map[3:]
return color_map
def visualize(image, result, weight=0.6, fps=None):
"""
Convert predict result to color image, and save added image.
Args:
image (str): The input image.
result (np.ndarray): The predict result of image.
weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6
fps (str): The FPS to be drawn on the input image.
Returns:
vis_result (np.ndarray): The visualized result.
"""
color_map = get_color_map_list(256)
color_map = np.array(color_map).reshape(256, 3).astype(np.uint8)
# Use OpenCV LUT for color mapping
c1 = cv.LUT(result, color_map[:, 0])
c2 = cv.LUT(result, color_map[:, 1])
c3 = cv.LUT(result, color_map[:, 2])
pseudo_img = np.dstack((c1, c2, c3))
vis_result = cv.addWeighted(image, weight, pseudo_img, 1 - weight, 0)
if fps is not None:
cv.putText(vis_result, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
return vis_result
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# Instantiate PPHumanSeg
model = PPHumanSeg(modelPath=args.model, backendId=backend_id, targetId=target_id)
if args.input is not None:
# Read image and resize to 192x192
image = cv.imread(args.input)
h, w, _ = image.shape
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
_image = cv.resize(image, dsize=(192, 192))
# Inference
result = model.infer(_image)
result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST)
# Draw results on the input image
image = visualize(image, result)
# Save results if save is true
if args.save:
print('Results saved to result.jpg\n')
cv.imwrite('result.jpg', image)
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
_frame = cv.resize(_frame, dsize=(192, 192))
# Inference
tm.start()
result = model.infer(_frame)
tm.stop()
result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST)
# Draw results on the input image
frame = visualize(frame, result, fps=tm.getFPS())
# Visualize results in a new window
cv.imshow('PPHumanSeg Demo', frame)
tm.reset()