|
|
|
|
|
|
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from vittrack import VitTrack |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser( |
|
description="VIT track opencv API") |
|
parser.add_argument('--input', '-i', type=str, |
|
help='Usage: Set path to the input video. Omit for using default camera.') |
|
parser.add_argument('--model_path', type=str, default='object_tracking_vittrack_2023sep.onnx', |
|
help='Usage: Set model path') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--save', '-s', action='store_true', default=False, |
|
help='Usage: Specify to save a file with results.') |
|
parser.add_argument('--vis', '-v', action='store_true', default=True, |
|
help='Usage: Specify to open a new window to show results.') |
|
args = parser.parse_args() |
|
def visualize(image, bbox, score, isLocated, fps=None, box_color=(0, 255, 0),text_color=(0, 255, 0), fontScale = 1, fontSize = 1): |
|
output = image.copy() |
|
h, w, _ = output.shape |
|
|
|
if fps is not None: |
|
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 30), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize) |
|
|
|
if isLocated and score >= 0.3: |
|
|
|
x, y, w, h = bbox |
|
cv.rectangle(output, (x, y), (x+w, y+h), box_color, 2) |
|
cv.putText(output, '{:.2f}'.format(score), (x, y+25), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize) |
|
else: |
|
text_size, baseline = cv.getTextSize('Target lost!', cv.FONT_HERSHEY_DUPLEX, fontScale, fontSize) |
|
text_x = int((w - text_size[0]) / 2) |
|
text_y = int((h - text_size[1]) / 2) |
|
cv.putText(output, 'Target lost!', (text_x, text_y), cv.FONT_HERSHEY_DUPLEX, fontScale, (0, 0, 255), fontSize) |
|
|
|
return output |
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
model = VitTrack( |
|
model_path=args.model_path, |
|
backend_id=backend_id, |
|
target_id=target_id) |
|
|
|
|
|
_input = 0 if args.input is None else args.input |
|
video = cv.VideoCapture(_input) |
|
|
|
|
|
has_frame, first_frame = video.read() |
|
if not has_frame: |
|
print('No frames grabbed!') |
|
exit() |
|
first_frame_copy = first_frame.copy() |
|
cv.putText(first_frame_copy, "1. Drag a bounding box to track.", (0, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0)) |
|
cv.putText(first_frame_copy, "2. Press ENTER to confirm", (0, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0)) |
|
roi = cv.selectROI('VitTrack Demo', first_frame_copy) |
|
|
|
if np.all(np.array(roi) == 0): |
|
print("No ROI is selected! Exiting ...") |
|
exit() |
|
else: |
|
print("Selected ROI: {}".format(roi)) |
|
|
|
if args.save: |
|
fps = video.get(cv.CAP_PROP_FPS) |
|
frame_size = (first_frame.shape[1], first_frame.shape[0]) |
|
output_video = cv.VideoWriter('output.mp4', cv.VideoWriter_fourcc(*'mp4v'), fps, frame_size) |
|
|
|
|
|
model.init(first_frame, roi) |
|
|
|
|
|
tm = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
has_frame, frame = video.read() |
|
if not has_frame: |
|
print('End of video') |
|
break |
|
|
|
tm.start() |
|
isLocated, bbox, score = model.infer(frame) |
|
tm.stop() |
|
|
|
frame = visualize(frame, bbox, score, isLocated, fps=tm.getFPS()) |
|
if args.save: |
|
output_video.write(frame) |
|
|
|
if args.vis: |
|
cv.imshow('VitTrack Demo', frame) |
|
tm.reset() |
|
|
|
if args.save: |
|
output_video.release() |
|
|
|
video.release() |
|
cv.destroyAllWindows() |
|
|