|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from mp_persondet import MPPersonDet |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser(description='Person Detector from MediaPipe') |
|
parser.add_argument('--input', '-i', type=str, |
|
help='Usage: Set path to the input image. Omit for using default camera.') |
|
parser.add_argument('--model', '-m', type=str, default='./person_detection_mediapipe_2023mar.onnx', |
|
help='Usage: Set model path, defaults to person_detection_mediapipe_2023mar.onnx') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--score_threshold', type=float, default=0.5, |
|
help='Usage: Set the minimum needed confidence for the model to identify a person, defaults to 0.5. Smaller values may result in faster detection, but will limit accuracy. Filter out persons of confidence < conf_threshold.') |
|
parser.add_argument('--nms_threshold', type=float, default=0.3, |
|
help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.') |
|
parser.add_argument('--top_k', type=int, default=5000, |
|
help='Usage: Keep top_k bounding boxes before NMS.') |
|
parser.add_argument('--save', '-s', action='store_true', |
|
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.') |
|
parser.add_argument('--vis', '-v', action='store_true', |
|
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.') |
|
args = parser.parse_args() |
|
|
|
def visualize(image, results, fps=None): |
|
output = image.copy() |
|
|
|
if fps is not None: |
|
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
|
|
|
for idx, person in enumerate(results): |
|
score = person[-1] |
|
person_landmarks = person[4:-1].reshape(4, 2).astype(np.int32) |
|
|
|
hip_point = person_landmarks[0] |
|
full_body = person_landmarks[1] |
|
shoulder_point = person_landmarks[2] |
|
upper_body = person_landmarks[3] |
|
|
|
|
|
radius = np.linalg.norm(hip_point - full_body).astype(np.int32) |
|
cv.circle(output, hip_point, radius, (255, 0, 0), 2) |
|
|
|
|
|
radius = np.linalg.norm(shoulder_point - upper_body).astype(np.int32) |
|
cv.circle(output, shoulder_point, radius, (0, 255, 255), 2) |
|
|
|
|
|
for p in person_landmarks: |
|
cv.circle(output, p, 2, (0, 0, 255), 2) |
|
|
|
|
|
cv.putText(output, 'Score: {:.4f}'.format(score), (0, output.shape[0] - 48), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 255, 0)) |
|
|
|
cv.putText(output, 'Yellow: upper body circle', (0, output.shape[0] - 36), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 255, 255)) |
|
cv.putText(output, 'Blue: full body circle', (0, output.shape[0] - 24), cv.FONT_HERSHEY_DUPLEX, 0.5, (255, 0, 0)) |
|
cv.putText(output, 'Red: keypoint', (0, output.shape[0] - 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
|
|
return output |
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
|
|
model = MPPersonDet(modelPath=args.model, |
|
nmsThreshold=args.nms_threshold, |
|
scoreThreshold=args.score_threshold, |
|
topK=args.top_k, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
|
|
if args.input is not None: |
|
image = cv.imread(args.input) |
|
|
|
|
|
results = model.infer(image) |
|
if len(results) == 0: |
|
print('Person not detected') |
|
|
|
|
|
image = visualize(image, results) |
|
|
|
|
|
if args.save: |
|
print('Resutls saved to result.jpg\n') |
|
cv.imwrite('result.jpg', image) |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(args.input, image) |
|
cv.waitKey(0) |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
|
|
tm = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
|
|
tm.start() |
|
results = model.infer(frame) |
|
tm.stop() |
|
|
|
|
|
frame = visualize(frame, results, fps=tm.getFPS()) |
|
|
|
|
|
cv.imshow('MPPersonDet Demo', frame) |
|
|
|
tm.reset() |
|
|
|
|