|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from youtureid import YoutuReID |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser( |
|
description="ReID baseline models from Tencent Youtu Lab") |
|
parser.add_argument('--query_dir', '-q', type=str, |
|
help='Query directory.') |
|
parser.add_argument('--gallery_dir', '-g', type=str, |
|
help='Gallery directory.') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--topk', type=int, default=10, |
|
help='Top-K closest from gallery for each query.') |
|
parser.add_argument('--model', '-m', type=str, default='person_reid_youtu_2021nov.onnx', |
|
help='Path to the model.') |
|
parser.add_argument('--save', '-s', action='store_true', |
|
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.') |
|
parser.add_argument('--vis', '-v', action='store_true', |
|
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.') |
|
args = parser.parse_args() |
|
|
|
def readImageFromDirectory(img_dir, w=128, h=256): |
|
img_list = [] |
|
file_list = os.listdir(img_dir) |
|
for f in file_list: |
|
img = cv.imread(os.path.join(img_dir, f)) |
|
img = cv.resize(img, (w, h)) |
|
img_list.append(img) |
|
return img_list, file_list |
|
|
|
def visualize(results, query_dir, gallery_dir, output_size=(128, 384)): |
|
def addBorder(img, color, borderSize=5): |
|
border = cv.copyMakeBorder(img, top=borderSize, bottom=borderSize, left=borderSize, right=borderSize, borderType=cv.BORDER_CONSTANT, value=color) |
|
return border |
|
|
|
results_vis = dict.fromkeys(results.keys(), None) |
|
for f, topk_f in results.items(): |
|
query_img = cv.imread(os.path.join(query_dir, f)) |
|
query_img = cv.resize(query_img, output_size) |
|
query_img = addBorder(query_img, [0, 0, 0]) |
|
cv.putText(query_img, 'Query', (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0, 255, 0), 2) |
|
|
|
gallery_img_list = [] |
|
for idx, gallery_f in enumerate(topk_f): |
|
gallery_img = cv.imread(os.path.join(gallery_dir, gallery_f)) |
|
gallery_img = cv.resize(gallery_img, output_size) |
|
gallery_img = addBorder(gallery_img, [255, 255, 255]) |
|
cv.putText(gallery_img, 'G{:02d}'.format(idx), (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0, 255, 0), 2) |
|
gallery_img_list.append(gallery_img) |
|
|
|
results_vis[f] = np.concatenate([query_img] + gallery_img_list, axis=1) |
|
|
|
return results_vis |
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
|
|
net = YoutuReID(modelPath=args.model, backendId=backend_id, targetId=target_id) |
|
|
|
|
|
query_img_list, query_file_list = readImageFromDirectory(args.query_dir) |
|
gallery_img_list, gallery_file_list = readImageFromDirectory(args.gallery_dir) |
|
|
|
|
|
topk_indices = net.query(query_img_list, gallery_img_list, args.topk) |
|
|
|
|
|
results = dict.fromkeys(query_file_list, None) |
|
for f, indices in zip(query_file_list, topk_indices): |
|
topk_matches = [] |
|
for idx in indices: |
|
topk_matches.append(gallery_file_list[idx]) |
|
results[f] = topk_matches |
|
|
|
print('Query: {}'.format(f)) |
|
print('\tTop-{} from gallery: {}'.format(args.topk, str(topk_matches))) |
|
|
|
|
|
results_vis = visualize(results, args.query_dir, args.gallery_dir) |
|
|
|
if args.save: |
|
for f, img in results_vis.items(): |
|
cv.imwrite('result-{}'.format(f), img) |
|
|
|
if args.vis: |
|
for f, img in results_vis.items(): |
|
cv.namedWindow('result-{}'.format(f), cv.WINDOW_AUTOSIZE) |
|
cv.imshow('result-{}'.format(f), img) |
|
cv.waitKey(0) |
|
cv.destroyAllWindows() |
|
|
|
|