|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
class YoutuReID: |
|
def __init__(self, modelPath, backendId=0, targetId=0): |
|
self._modelPath = modelPath |
|
self._backendId = backendId |
|
self._targetId = targetId |
|
|
|
self._model = cv.dnn.readNet(modelPath) |
|
self._model.setPreferableBackend(self._backendId) |
|
self._model.setPreferableTarget(self._targetId) |
|
|
|
self._input_size = (128, 256) |
|
self._output_dim = 768 |
|
self._mean = (0.485, 0.456, 0.406) |
|
self._std = (0.229, 0.224, 0.225) |
|
|
|
@property |
|
def name(self): |
|
return self.__class__.__name__ |
|
|
|
def setBackendAndTarget(self, backendId, targetId): |
|
self._backendId = backendId |
|
self._targetId = targetId |
|
self._model.setPreferableBackend(self._backendId) |
|
self._model.setPreferableTarget(self._targetId) |
|
|
|
def _preprocess(self, image): |
|
image = image[:, :, ::-1] |
|
image = (image / 255.0 - self._mean) / self._std |
|
return cv.dnn.blobFromImage(image.astype(np.float32)) |
|
|
|
|
|
def infer(self, image): |
|
|
|
inputBlob = self._preprocess(image) |
|
|
|
|
|
self._model.setInput(inputBlob) |
|
features = self._model.forward() |
|
return np.reshape(features, (features.shape[0], features.shape[1])) |
|
|
|
def query(self, query_img_list, gallery_img_list, topK=5): |
|
query_features_list = [] |
|
for q in query_img_list: |
|
query_features_list.append(self.infer(q)) |
|
query_features = np.concatenate(query_features_list, axis=0) |
|
query_norm = np.linalg.norm(query_features, ord=2, axis=1, keepdims=True) |
|
query_arr = query_features / (query_norm + np.finfo(np.float32).eps) |
|
|
|
gallery_features_list = [] |
|
for g in gallery_img_list: |
|
gallery_features_list.append(self.infer(g)) |
|
gallery_features = np.concatenate(gallery_features_list, axis=0) |
|
gallery_norm = np.linalg.norm(gallery_features, ord=2, axis=1, keepdims=True) |
|
gallery_arr = gallery_features / (gallery_norm + np.finfo(np.float32).eps) |
|
|
|
dist = np.matmul(query_arr, gallery_arr.T) |
|
idx = np.argsort(-dist, axis=1) |
|
return [i[0:topK] for i in idx] |
|
|