import cv2 as cv import numpy as np class Dexined: def __init__(self, modelPath='edge_detection_dexined_2024sep.onnx', backendId=0, targetId=0): self._modelPath = modelPath self._backendId = backendId self._targetId = targetId # Load the model self._model = cv.dnn.readNetFromONNX(self._modelPath) self.setBackendAndTarget(self._backendId, self._targetId) @property def name(self): return self.__class__.__name__ def setBackendAndTarget(self, backendId, targetId): self._backendId = backendId self._targetId = targetId self._model.setPreferableBackend(self._backendId) self._model.setPreferableTarget(self._targetId) @staticmethod def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) def postProcessing(self, output, shape): h, w = shape preds = [] for p in output: img = self.sigmoid(p) img = np.squeeze(img) img = cv.normalize(img, None, 0, 255, cv.NORM_MINMAX, cv.CV_8U) img = cv.resize(img, (w, h)) preds.append(img) fuse = preds[-1] ave = np.array(preds, dtype=np.float32) ave = np.uint8(np.mean(ave, axis=0)) return fuse, ave def infer(self, image): inp = cv.dnn.blobFromImage(image, 1.0, (512, 512), (103.5, 116.2, 123.6), swapRB=False, crop=False) self._model.setInput(inp) # Forward pass through the model out = self._model.forward() result, _ = self.postProcessing(out, image.shape[:2]) return result