# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. import sys import argparse import numpy as np import cv2 as cv # Check OpenCV version opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" sys.path.append('../face_detection_yunet') from yunet import YuNet from ediffiqa import eDifFIQA # Valid combinations of backends and targets backend_target_pairs = [ [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], [cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], [cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] ] REFERENCE_FACIAL_POINTS = [ [38.2946 , 51.6963 ], [73.5318 , 51.5014 ], [56.0252 , 71.7366 ], [41.5493 , 92.3655 ], [70.729904, 92.2041 ] ] parser = argparse.ArgumentParser(description='eDifFIQA: Towards Efficient Face Image Quality Assessment based on Denoising Diffusion Probabilistic Models (https://github.com/LSIbabnikz/eDifFIQA).') parser.add_argument('--input', '-i', type=str, default='./sample_image.jpg', help='Usage: Set input to a certain image, defaults to "./sample_image.jpg".') parser.add_argument('--backend_target', '-bt', type=int, default=0, help='''Choose one of the backend-target pair to run this demo: {:d}: (default) OpenCV implementation + CPU, {:d}: CUDA + GPU (CUDA), {:d}: CUDA + GPU (CUDA FP16), {:d}: TIM-VX + NPU, {:d}: CANN + NPU '''.format(*[x for x in range(len(backend_target_pairs))])) ediffiqa_parser = parser.add_argument_group("eDifFIQA", " Parameters of eDifFIQA - For face image quality assessment ") ediffiqa_parser.add_argument('--model_q', '-mq', type=str, default='ediffiqa_tiny_jun2024.onnx', help="Usage: Set model type, defaults to 'ediffiqa_tiny_jun2024.onnx'.") yunet_parser = parser.add_argument_group("YuNet", " Parameters of YuNet - For face detection ") yunet_parser.add_argument('--model_d', '-md', type=str, default='../face_detection_yunet/face_detection_yunet_2023mar.onnx', help="Usage: Set model type, defaults to '../face_detection_yunet/face_detection_yunet_2023mar.onnx'.") yunet_parser.add_argument('--conf_threshold', type=float, default=0.9, help='Usage: Set the minimum needed confidence for the model to identify a face, defauts to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.') yunet_parser.add_argument('--nms_threshold', type=float, default=0.3, help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.') yunet_parser.add_argument('--top_k', type=int, default=5000, help='Usage: Keep top_k bounding boxes before NMS.') args = parser.parse_args() def visualize(image, results): output = image.copy() cv.putText(output, f"{results:.3f}", (0, 20), cv.FONT_HERSHEY_DUPLEX, .8, (0, 0, 255)) return output def align_image(image, detection_data): """ Performs face alignment on given image using the provided face landmarks (keypoints) Args: image (np.array): Unaligned face image detection_data (np.array): Detection data provided by YuNet Returns: np.array: Aligned image """ reference_pts = REFERENCE_FACIAL_POINTS ref_pts = np.float32(reference_pts) ref_pts_shp = ref_pts.shape if ref_pts_shp[0] == 2: ref_pts = ref_pts.T # Get source keypoints from YuNet detection data src_pts = np.float32(detection_data[0][4:-1]).reshape(5,2) src_pts_shp = src_pts.shape if src_pts_shp[0] == 2: src_pts = src_pts.T tfm, _ = cv.estimateAffinePartial2D(src_pts, ref_pts, method=cv.LMEDS) face_img = cv.warpAffine(image, tfm, (112, 112)) return face_img if __name__ == '__main__': backend_id = backend_target_pairs[args.backend_target][0] target_id = backend_target_pairs[args.backend_target][1] # Instantiate eDifFIQA(T) (quality assesment) model_quality = eDifFIQA( modelPath=args.model_q, inputSize=[112, 112], ) model_quality.setBackendAndTarget( backendId=backend_id, targetId=target_id ) # Instantiate YuNet (face detection) model_detect = YuNet( modelPath=args.model_d, inputSize=[320, 320], confThreshold=args.conf_threshold, nmsThreshold=args.nms_threshold, topK=args.top_k, backendId=backend_id, targetId=target_id ) # If input is an image image = cv.imread(args.input) h, w, _ = image.shape # Face Detection model_detect.setInputSize([w, h]) results_detect = model_detect.infer(image) assert results_detect.size != 0, f" Face could not be detected in: {args.input}. " # Face Alignment aligned_image = align_image(image, results_detect) # Quality Assesment quality = model_quality.infer(aligned_image) quality = np.squeeze(quality).item() viz_image = visualize(aligned_image, quality) print(f" Quality score of {args.input}: {quality:.3f} ") print(f" Saving visualization to results.jpg. ") cv.imwrite('results.jpg', viz_image)