#include "opencv2/opencv.hpp" #include #include #include #include using namespace std; using namespace cv; using namespace dnn; std::vector> backend_target_pairs = { {DNN_BACKEND_OPENCV, DNN_TARGET_CPU}, {DNN_BACKEND_CUDA, DNN_TARGET_CUDA}, {DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16}, {DNN_BACKEND_TIMVX, DNN_TARGET_NPU}, {DNN_BACKEND_CANN, DNN_TARGET_NPU} }; class FER { private: Net model; string modelPath; float std[5][2] = { {38.2946, 51.6963}, {73.5318, 51.5014}, {56.0252, 71.7366}, {41.5493, 92.3655}, {70.7299, 92.2041} }; vector expressionEnum = { "angry", "disgust", "fearful", "happy", "neutral", "sad", "surprised" }; Mat stdPoints = Mat(5, 2, CV_32F, this->std); Size patchSize = Size(112,112); Scalar imageMean = Scalar(0.5,0.5,0.5); Scalar imageStd = Scalar(0.5,0.5,0.5); const String inputNames = "data"; const String outputNames = "label"; int backend_id; int target_id; public: FER(const string& modelPath, int backend_id = 0, int target_id = 0) : modelPath(modelPath), backend_id(backend_id), target_id(target_id) { this->model = readNet(modelPath); this->model.setPreferableBackend(backend_id); this->model.setPreferableTarget(target_id); } Mat preprocess(const Mat image, const Mat points) { // image alignment Mat transformation = estimateAffine2D(points, this->stdPoints); Mat aligned = Mat::zeros(this->patchSize.height, this->patchSize.width, image.type()); warpAffine(image, aligned, transformation, this->patchSize); // image normalization aligned.convertTo(aligned, CV_32F, 1.0 / 255.0); aligned -= imageMean; aligned /= imageStd; return blobFromImage(aligned);; } String infer(const Mat image, const Mat facePoints) { Mat points = facePoints(Rect(4, 0, facePoints.cols-5, facePoints.rows)).reshape(2, 5); Mat inputBlob = preprocess(image, points); this->model.setInput(inputBlob, this->inputNames); Mat outputBlob = this->model.forward(this->outputNames); Point maxLoc; minMaxLoc(outputBlob, nullptr, nullptr, nullptr, &maxLoc); return getDesc(maxLoc.x); } String getDesc(int ind) { if (ind >= 0 && ind < this->expressionEnum.size()) { return this->expressionEnum[ind]; } else { cerr << "Error: Index out of bounds." << endl; return ""; } } }; class YuNet { public: YuNet(const string& model_path, const Size& input_size = Size(320, 320), float conf_threshold = 0.6f, float nms_threshold = 0.3f, int top_k = 5000, int backend_id = 0, int target_id = 0) : model_path_(model_path), input_size_(input_size), conf_threshold_(conf_threshold), nms_threshold_(nms_threshold), top_k_(top_k), backend_id_(backend_id), target_id_(target_id) { model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_); } void setBackendAndTarget(int backend_id, int target_id) { backend_id_ = backend_id; target_id_ = target_id; model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_); } /* Overwrite the input size when creating the model. Size format: [Width, Height]. */ void setInputSize(const Size& input_size) { input_size_ = input_size; model->setInputSize(input_size_); } Mat infer(const Mat image) { Mat res; model->detect(image, res); return res; } private: Ptr model; string model_path_; Size input_size_; float conf_threshold_; float nms_threshold_; int top_k_; int backend_id_; int target_id_; }; cv::Mat visualize(const cv::Mat& image, const cv::Mat& faces, const vector expressions, float fps = -1.f) { static cv::Scalar box_color{0, 255, 0}; static std::vector landmark_color{ cv::Scalar(255, 0, 0), // right eye cv::Scalar( 0, 0, 255), // left eye cv::Scalar( 0, 255, 0), // nose tip cv::Scalar(255, 0, 255), // right mouth corner cv::Scalar( 0, 255, 255) // left mouth corner }; static cv::Scalar text_color{0, 255, 0}; auto output_image = image.clone(); if (fps >= 0) { cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2); } for (int i = 0; i < faces.rows; ++i) { // Draw bounding boxes int x1 = static_cast(faces.at(i, 0)); int y1 = static_cast(faces.at(i, 1)); int w = static_cast(faces.at(i, 2)); int h = static_cast(faces.at(i, 3)); cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2); // Expression as text String exp = expressions[i]; cv::putText(output_image, exp, cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.5, text_color); // Draw landmarks for (int j = 0; j < landmark_color.size(); ++j) { int x = static_cast(faces.at(i, 2*j+4)), y = static_cast(faces.at(i, 2*j+5)); cv::circle(output_image, cv::Point(x, y), 2, landmark_color[j], 2); } } return output_image; } string keys = "{ help h | | Print help message. }" "{ model m | facial_expression_recognition_mobilefacenet_2022july.onnx | Usage: Path to the model, defaults to facial_expression_recognition_mobilefacenet_2022july.onnx }" "{ yunet_model ym | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Usage: Path to the face detection yunet model, defaults to face_detection_yunet_2023mar.onnx }" "{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" "{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n" "0: (default) OpenCV implementation + CPU,\n" "1: CUDA + GPU (CUDA),\n" "2: CUDA + GPU (CUDA FP16),\n" "3: TIM-VX + NPU,\n" "4: CANN + NPU}" "{ save s | false | Specify to save results.}" "{ vis v | true | Specify to open a window for result visualization.}" ; int main(int argc, char** argv) { CommandLineParser parser(argc, argv, keys); parser.about("Facial Expression Recognition"); if (parser.has("help")) { parser.printMessage(); return 0; } string modelPath = parser.get("model"); string yunetModelPath = parser.get("yunet_model"); string inputPath = parser.get("input"); uint8_t backendTarget = parser.get("backend_target"); bool saveFlag = parser.get("save"); bool visFlag = parser.get("vis"); if (modelPath.empty()) CV_Error(Error::StsError, "Model file " + modelPath + " not found"); if (yunetModelPath.empty()) CV_Error(Error::StsError, "Face Detection Model file " + yunetModelPath + " not found"); YuNet faceDetectionModel(yunetModelPath); FER expressionRecognitionModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second); VideoCapture cap; if (!inputPath.empty()) cap.open(samples::findFile(inputPath)); else cap.open(0); if (!cap.isOpened()) CV_Error(Error::StsError, "Cannot opend video or file"); Mat frame; static const std::string kWinName = "Facial Expression Demo"; while (waitKey(1) < 0) { cap >> frame; if (frame.empty()) { if(inputPath.empty()) cout << "Frame is empty" << endl; break; } faceDetectionModel.setInputSize(frame.size()); Mat faces = faceDetectionModel.infer(frame); vector expressions; for (int i = 0; i < faces.rows; ++i) { Mat face = faces.row(i); String exp = expressionRecognitionModel.infer(frame, face); expressions.push_back(exp); int x1 = static_cast(faces.at(i, 0)); int y1 = static_cast(faces.at(i, 1)); int w = static_cast(faces.at(i, 2)); int h = static_cast(faces.at(i, 3)); float conf = faces.at(i, 14); std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f expression=%s\n", i, x1, y1, w, h, conf, exp.c_str()); } Mat res_frame = visualize(frame, faces, expressions); if(visFlag || inputPath.empty()) { imshow(kWinName, res_frame); if(!inputPath.empty()) waitKey(0); } if(saveFlag) { cout << "Results are saved to result.jpg" << endl; cv::imwrite("result.jpg", res_frame); } } return 0; }