# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. # # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. # Third party copyrights are property of their respective owners. import numpy as np import cv2 as cv class PPHumanSeg: def __init__(self, modelPath, backendId=0, targetId=0): self._modelPath = modelPath self._backendId = backendId self._targetId = targetId self._model = cv.dnn.readNet(self._modelPath) self._model.setPreferableBackend(self._backendId) self._model.setPreferableTarget(self._targetId) self._inputNames = '' self._outputNames = ['save_infer_model/scale_0.tmp_1'] self._currentInputSize = None self._inputSize = [192, 192] self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :] self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :] @property def name(self): return self.__class__.__name__ def setBackendAndTarget(self, backendId, targetId): self._backendId = backendId self._targetId = targetId self._model.setPreferableBackend(self._backendId) self._model.setPreferableTarget(self._targetId) def _preprocess(self, image): image = cv.cvtColor(image, cv.COLOR_BGR2RGB) self._currentInputSize = image.shape image = cv.resize(image, (192, 192)) image = image.astype(np.float32, copy=False) / 255.0 image -= self._mean image /= self._std return cv.dnn.blobFromImage(image) def infer(self, image): # Preprocess inputBlob = self._preprocess(image) # Forward self._model.setInput(inputBlob, self._inputNames) outputBlob = self._model.forward() # Postprocess results = self._postprocess(outputBlob) return results def _postprocess(self, outputBlob): outputBlob = outputBlob[0] outputBlob = cv.resize(outputBlob.transpose(1,2,0), (self._currentInputSize[1], self._currentInputSize[0]), interpolation=cv.INTER_LINEAR).transpose(2,0,1)[np.newaxis, ...] result = np.argmax(outputBlob, axis=1).astype(np.uint8) return result