# MobileNets MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNetV2: Inverted Residuals and Linear Bottlenecks **Note**: - `image_classification_mobilenetvX_2022apr_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`. Results of accuracy evaluation with [tools/eval](../../tools/eval). | Models | Top-1 Accuracy | Top-5 Accuracy | | ------------------ | -------------- | -------------- | | MobileNet V1 | 67.64 | 87.97 | | MobileNet V1 block | 67.21 | 87.62 | | MobileNet V1 quant | 55.53 | 78.74 | | MobileNet V2 | 69.44 | 89.23 | | MobileNet V2 block | 68.66 | 88.90 | | MobileNet V2 quant | 68.37 | 88.56 | \*: 'quant' stands for 'quantized'. \*\*: 'block' stands for 'blockwise quantized'. ## Demo ### Python Run the following command to try the demo: ```shell # MobileNet V1 python demo.py --input /path/to/image # MobileNet V2 python demo.py --input /path/to/image --model v2 # get help regarding various parameters python demo.py --help ``` ### C++ Install latest OpenCV and CMake >= 3.24.0 to get started with: ```shell # A typical and default installation path of OpenCV is /usr/local cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation . cmake --build build # detect on camera input ./build/opencv_zoo_image_classification_mobilenet # detect on an image ./build/opencv_zoo_image_classification_mobilenet -m=/path/to/model -i=/path/to/image -v # get help messages ./build/opencv_zoo_image_classification_mobilenet -h ``` ## License All files in this directory are licensed under [Apache 2.0 License](./LICENSE). ## Reference - MobileNet V1: https://arxiv.org/abs/1704.04861 - MobileNet V2: https://arxiv.org/abs/1801.04381 - MobileNet V1 weight and scripts for training: https://github.com/wjc852456/pytorch-mobilenet-v1 - MobileNet V2 weight: https://github.com/onnx/models/tree/main/vision/classification/mobilenet