# Quantization with ONNXRUNTIME and Neural Compressor [ONNXRUNTIME](https://github.com/microsoft/onnxruntime) and [Neural Compressor](https://github.com/intel/neural-compressor) are used for quantization in the Zoo. Install dependencies before trying quantization: ```shell pip install -r requirements.txt ``` ## Quantization Usage Quantize all models in the Zoo: ```shell python quantize-ort.py python quantize-inc.py ``` Quantize one of the models in the Zoo: ```shell # python quantize.py python quantize-ort.py yunet python quantize-inc.py mobilenetv1 ``` Customizing quantization configs: ```python # Quantize with ONNXRUNTIME # 1. add your model into `models` dict in quantize-ort.py models = dict( # ... model1=Quantize(model_path='/path/to/model1.onnx', calibration_image_dir='/path/to/images', transforms=Compose([''' transforms ''']), # transforms can be found in transforms.py per_channel=False, # set False to quantize in per-tensor style act_type='int8', # available types: 'int8', 'uint8' wt_type='int8' # available types: 'int8', 'uint8' ) ) # 2. quantize your model python quantize-ort.py model1 # Quantize with Intel Neural Compressor # 1. add your model into `models` dict in quantize-inc.py models = dict( # ... model1=Quantize(model_path='/path/to/model1.onnx', config_path='/path/to/model1.yaml'), ) # 2. prepare your YAML config model1.yaml (see configs in ./inc_configs) # 3. quantize your model python quantize-inc.py model1 ``` ## Blockwise quantization usage Block-quantized models under each model directory are generated with `--block_size=64` `block_quantize.py` requires Python>=3.7 To perform weight-only blockwise quantization: ```shell python block_quantize.py --input_model INPUT_MODEL.onnx --output_model OUTPUT_MODEL.onnx --block_size {block size} --bits {8,16} ``` ## Dataset Some models are quantized with extra datasets. - [MP-PalmDet](../../models/palm_detection_mediapipe) and [MP-HandPose](../../models/handpose_estimation_mediapipe) are quantized with evaluation set of [FreiHAND](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html). Download the dataset from [this link](https://lmb.informatik.uni-freiburg.de/data/freihand/FreiHAND_pub_v2_eval.zip). Unpack it and replace `path/to/dataset` with the path to `FreiHAND_pub_v2_eval/evaluation/rgb`.