# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. # # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. # Third party copyrights are property of their respective owners. import argparse import numpy as np import cv2 as cv # Check OpenCV version opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" from pphumanseg import PPHumanSeg # Valid combinations of backends and targets backend_target_pairs = [ [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], [cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], [cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] ] parser = argparse.ArgumentParser(description='PPHumanSeg (https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.2/contrib/PP-HumanSeg)') parser.add_argument('--input', '-i', type=str, help='Usage: Set input path to a certain image, omit if using camera.') parser.add_argument('--model', '-m', type=str, default='human_segmentation_pphumanseg_2023mar.onnx', help='Usage: Set model path, defaults to human_segmentation_pphumanseg_2023mar.onnx.') parser.add_argument('--backend_target', '-bt', type=int, default=0, help='''Choose one of the backend-target pair to run this demo: {:d}: (default) OpenCV implementation + CPU, {:d}: CUDA + GPU (CUDA), {:d}: CUDA + GPU (CUDA FP16), {:d}: TIM-VX + NPU, {:d}: CANN + NPU '''.format(*[x for x in range(len(backend_target_pairs))])) parser.add_argument('--save', '-s', action='store_true', help='Usage: Specify to save a file with results. Invalid in case of camera input.') parser.add_argument('--vis', '-v', action='store_true', help='Usage: Specify to open a new window to show results. Invalid in case of camera input.') args = parser.parse_args() def get_color_map_list(num_classes): """ Returns the color map for visualizing the segmentation mask, which can support arbitrary number of classes. Args: num_classes (int): Number of classes. Returns: (list). The color map. """ num_classes += 1 color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = color_map[3:] return color_map def visualize(image, result, weight=0.6, fps=None): """ Convert predict result to color image, and save added image. Args: image (str): The input image. result (np.ndarray): The predict result of image. weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6 fps (str): The FPS to be drawn on the input image. Returns: vis_result (np.ndarray): The visualized result. """ color_map = get_color_map_list(256) color_map = np.array(color_map).reshape(256, 3).astype(np.uint8) # Use OpenCV LUT for color mapping c1 = cv.LUT(result, color_map[:, 0]) c2 = cv.LUT(result, color_map[:, 1]) c3 = cv.LUT(result, color_map[:, 2]) pseudo_img = np.dstack((c1, c2, c3)) vis_result = cv.addWeighted(image, weight, pseudo_img, 1 - weight, 0) if fps is not None: cv.putText(vis_result, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) return vis_result if __name__ == '__main__': backend_id = backend_target_pairs[args.backend_target][0] target_id = backend_target_pairs[args.backend_target][1] # Instantiate PPHumanSeg model = PPHumanSeg(modelPath=args.model, backendId=backend_id, targetId=target_id) if args.input is not None: # Read image and resize to 192x192 image = cv.imread(args.input) h, w, _ = image.shape image = cv.cvtColor(image, cv.COLOR_BGR2RGB) _image = cv.resize(image, dsize=(192, 192)) # Inference result = model.infer(_image) result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST) # Draw results on the input image image = visualize(image, result) # Save results if save is true if args.save: print('Results saved to result.jpg\n') cv.imwrite('result.jpg', image) # Visualize results in a new window if args.vis: cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) cv.imshow(args.input, image) cv.waitKey(0) else: # Omit input to call default camera deviceId = 0 cap = cv.VideoCapture(deviceId) w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) tm = cv.TickMeter() while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: print('No frames grabbed!') break _frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB) _frame = cv.resize(_frame, dsize=(192, 192)) # Inference tm.start() result = model.infer(_frame) tm.stop() result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST) # Draw results on the input image frame = visualize(frame, result, fps=tm.getFPS()) # Visualize results in a new window cv.imshow('PPHumanSeg Demo', frame) tm.reset()