# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. # # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. # Third party copyrights are property of their respective owners. import argparse import numpy as np import cv2 as cv # Check OpenCV version opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" from wechatqrcode import WeChatQRCode # Valid combinations of backends and targets backend_target_pairs = [ [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], [cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], [cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] ] parser = argparse.ArgumentParser( description="WeChat QR code detector for detecting and parsing QR code (https://github.com/opencv/opencv_contrib/tree/master/modules/wechat_qrcode)") parser.add_argument('--input', '-i', type=str, help='Usage: Set path to the input image. Omit for using default camera.') parser.add_argument('--detect_prototxt_path', type=str, default='detect_2021nov.prototxt', help='Usage: Set path to detect.prototxt.') parser.add_argument('--detect_model_path', type=str, default='detect_2021nov.caffemodel', help='Usage: Set path to detect.caffemodel.') parser.add_argument('--sr_prototxt_path', type=str, default='sr_2021nov.prototxt', help='Usage: Set path to sr.prototxt.') parser.add_argument('--sr_model_path', type=str, default='sr_2021nov.caffemodel', help='Usage: Set path to sr.caffemodel.') parser.add_argument('--backend_target', '-bt', type=int, default=0, help='''Choose one of the backend-target pair to run this demo: {:d}: (default) OpenCV implementation + CPU, {:d}: CUDA + GPU (CUDA), {:d}: CUDA + GPU (CUDA FP16), {:d}: TIM-VX + NPU, {:d}: CANN + NPU '''.format(*[x for x in range(len(backend_target_pairs))])) parser.add_argument('--save', '-s', action='store_true', help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.') parser.add_argument('--vis', '-v', action='store_true', help='Usage: Specify to open a new window to show results. Invalid in case of camera input.') args = parser.parse_args() def visualize(image, res, points, points_color=(0, 255, 0), text_color=(0, 255, 0), fps=None): output = image.copy() h, w, _ = output.shape if fps is not None: cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) fontScale = 0.5 fontSize = 1 for r, p in zip(res, points): p = p.astype(np.int32) for _p in p: cv.circle(output, _p, 10, points_color, -1) qrcode_center_x = int((p[0][0] + p[2][0]) / 2) qrcode_center_y = int((p[0][1] + p[2][1]) / 2) text_size, baseline = cv.getTextSize(r, cv.FONT_HERSHEY_DUPLEX, fontScale, fontSize) text_x = qrcode_center_x - int(text_size[0] / 2) text_y = qrcode_center_y - int(text_size[1] / 2) cv.putText(output, '{}'.format(r), (text_x, text_y), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize) return output if __name__ == '__main__': backend_id = backend_target_pairs[args.backend_target][0] target_id = backend_target_pairs[args.backend_target][1] # Instantiate WeChatQRCode model = WeChatQRCode(args.detect_prototxt_path, args.detect_model_path, args.sr_prototxt_path, args.sr_model_path, backendId=backend_id, targetId=target_id) # If input is an image: if args.input is not None: image = cv.imread(args.input) res, points = model.infer(image) # Print results: print(res) print(points) # Draw results on the input image image = visualize(image, res, points) # Save results if save is true if args.save: print('Results saved to result.jpg\n') cv.imwrite('result.jpg', image) # Visualize results in a new window if args.vis: cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) cv.imshow(args.input, image) cv.waitKey(0) else: # Omit input to call default camera deviceId = 0 cap = cv.VideoCapture(deviceId) tm = cv.TickMeter() while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: print('No frames grabbed!') break # Inference tm.start() res, points = model.infer(frame) tm.stop() fps = tm.getFPS() # Draw results on the input image frame = visualize(frame, res, points, fps=fps) # Visualize results in a new window cv.imshow('WeChatQRCode Demo', frame) tm.reset()