import os import sys import numpy as np import cv2 as cv import onnx from neural_compressor.experimental import Quantization, common from neural_compressor.experimental.metric import BaseMetric class Accuracy(BaseMetric): def __init__(self, *args): self.pred_list = [] self.label_list = [] self.samples = 0 def update(self, predict, label): predict = np.array(predict) label = np.array(label) self.pred_list.append(np.argmax(predict[0])) self.label_list.append(label[0][0]) self.samples += 1 def reset(self): self.pred_list = [] self.label_list = [] self.samples = 0 def result(self): correct_num = np.sum(np.array(self.pred_list) == np.array(self.label_list)) return correct_num / self.samples class Quantize: def __init__(self, model_path, config_path, custom_dataset=None, eval_dataset=None, metric=None): self.model_path = model_path self.config_path = config_path self.custom_dataset = custom_dataset self.eval_dataset = eval_dataset self.metric = metric def run(self): print('Quantizing (int8) with Intel\'s Neural Compressor:') print('\tModel: {}'.format(self.model_path)) print('\tConfig: {}'.format(self.config_path)) output_name = '{}-int8-quantized.onnx'.format(self.model_path[:-5]) model = onnx.load(self.model_path) quantizer = Quantization(self.config_path) quantizer.model = common.Model(model) if self.custom_dataset is not None: quantizer.calib_dataloader = common.DataLoader(self.custom_dataset) if self.eval_dataset is not None: quantizer.eval_dataloader = common.DataLoader(self.eval_dataset) if self.metric is not None: quantizer.metric = common.Metric(metric_cls=self.metric, name='metric') q_model = quantizer() q_model.save(output_name) class Dataset: def __init__(self, root, size=None, dim='chw', scale=1.0, mean=0.0, std=1.0, swapRB=False, toFP32=False): self.root = root self.size = size self.dim = dim self.scale = scale self.mean = mean self.std = std self.swapRB = swapRB self.toFP32 = toFP32 self.image_list, self.label_list = self.load_image_list(self.root) def load_image_list(self, path): image_list = [] label_list = [] for f in os.listdir(path): if not f.endswith('.jpg'): continue image_list.append(os.path.join(path, f)) label_list.append(1) return image_list, label_list def __getitem__(self, idx): img = cv.imread(self.image_list[idx]) if self.swapRB: img = cv.cvtColor(img, cv.COLOR_BGR2RGB) if self.size: img = cv.resize(img, dsize=self.size) if self.toFP32: img = img.astype(np.float32) img = img * self.scale img = img - self.mean img = img / self.std if self.dim == 'chw': img = img.transpose(2, 0, 1) # hwc -> chw return img, self.label_list[idx] def __len__(self): return len(self.image_list) class FerDataset(Dataset): def __init__(self, root, size=None, dim='chw', scale=1.0, mean=0.0, std=1.0, swapRB=False, toFP32=False): super(FerDataset, self).__init__(root, size, dim, scale, mean, std, swapRB, toFP32) def load_image_list(self, path): image_list = [] label_list = [] for f in os.listdir(path): if not f.endswith('.jpg'): continue image_list.append(os.path.join(path, f)) label_list.append(int(f.split("_")[2])) return image_list, label_list models = dict( mobilenetv1=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx', config_path='./inc_configs/mobilenet.yaml'), mobilenetv2=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx', config_path='./inc_configs/mobilenet.yaml'), mp_handpose=Quantize(model_path='../../models/handpose_estimation_mediapipe/handpose_estimation_mediapipe_2022may.onnx', config_path='./inc_configs/mp_handpose.yaml', custom_dataset=Dataset(root='../../benchmark/data/palm_detection', dim='hwc', swapRB=True, mean=127.5, std=127.5, toFP32=True)), fer=Quantize(model_path='../../models/facial_expression_recognition/facial_expression_recognition_mobilefacenet_2022july.onnx', config_path='./inc_configs/fer.yaml', custom_dataset=FerDataset(root='../../benchmark/data/facial_expression_recognition/fer_calibration', size=(112, 112), toFP32=True, swapRB=True, scale=1./255, mean=0.5, std=0.5), eval_dataset=FerDataset(root='../../benchmark/data/facial_expression_recognition/fer_evaluation', size=(112, 112), toFP32=True, swapRB=True, scale=1./255, mean=0.5, std=0.5), metric=Accuracy), ) if __name__ == '__main__': selected_models = [] for i in range(1, len(sys.argv)): selected_models.append(sys.argv[i]) if not selected_models: selected_models = list(models.keys()) print('Models to be quantized: {}'.format(str(selected_models))) for selected_model_name in selected_models: q = models[selected_model_name] q.run()