|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from mp_pose import MPPose |
|
from mp_persondet import MPPersonDet |
|
|
|
mp_model_path = hf_hub_download(repo_id="opencv/person_detection_mediapipe", filename="person_detection_mediapipe_2023mar.onnx") |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser(description='Pose Estimation from MediaPipe') |
|
parser.add_argument('--input', '-i', type=str, |
|
help='Path to the input image. Omit for using default camera.') |
|
parser.add_argument('--model', '-m', type=str, default='./pose_estimation_mediapipe_2023mar.onnx', |
|
help='Path to the model.') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--conf_threshold', type=float, default=0.8, |
|
help='Filter out hands of confidence < conf_threshold.') |
|
parser.add_argument('--save', '-s', action='store_true', |
|
help='Specify to save results. This flag is invalid when using camera.') |
|
parser.add_argument('--vis', '-v', action='store_true', |
|
help='Specify to open a window for result visualization. This flag is invalid when using camera.') |
|
args = parser.parse_args() |
|
|
|
def visualize(image, poses): |
|
display_screen = image.copy() |
|
display_3d = np.zeros((400, 400, 3), np.uint8) |
|
cv.line(display_3d, (200, 0), (200, 400), (255, 255, 255), 2) |
|
cv.line(display_3d, (0, 200), (400, 200), (255, 255, 255), 2) |
|
cv.putText(display_3d, 'Main View', (0, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
cv.putText(display_3d, 'Top View', (200, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
cv.putText(display_3d, 'Left View', (0, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
cv.putText(display_3d, 'Right View', (200, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
is_draw = False |
|
|
|
def _draw_lines(image, landmarks, keep_landmarks, is_draw_point=True, thickness=2): |
|
|
|
def _draw_by_presence(idx1, idx2): |
|
if keep_landmarks[idx1] and keep_landmarks[idx2]: |
|
cv.line(image, landmarks[idx1], landmarks[idx2], (255, 255, 255), thickness) |
|
|
|
_draw_by_presence(0, 1) |
|
_draw_by_presence(1, 2) |
|
_draw_by_presence(2, 3) |
|
_draw_by_presence(3, 7) |
|
_draw_by_presence(0, 4) |
|
_draw_by_presence(4, 5) |
|
_draw_by_presence(5, 6) |
|
_draw_by_presence(6, 8) |
|
|
|
_draw_by_presence(9, 10) |
|
|
|
_draw_by_presence(12, 14) |
|
_draw_by_presence(14, 16) |
|
_draw_by_presence(16, 22) |
|
_draw_by_presence(16, 18) |
|
_draw_by_presence(16, 20) |
|
_draw_by_presence(18, 20) |
|
|
|
_draw_by_presence(11, 13) |
|
_draw_by_presence(13, 15) |
|
_draw_by_presence(15, 21) |
|
_draw_by_presence(15, 19) |
|
_draw_by_presence(15, 17) |
|
_draw_by_presence(17, 19) |
|
|
|
_draw_by_presence(11, 12) |
|
_draw_by_presence(11, 23) |
|
_draw_by_presence(23, 24) |
|
_draw_by_presence(24, 12) |
|
|
|
_draw_by_presence(24, 26) |
|
_draw_by_presence(26, 28) |
|
_draw_by_presence(28, 30) |
|
_draw_by_presence(28, 32) |
|
_draw_by_presence(30, 32) |
|
|
|
_draw_by_presence(23, 25) |
|
_draw_by_presence(25, 27) |
|
_draw_by_presence(27, 31) |
|
_draw_by_presence(27, 29) |
|
_draw_by_presence(29, 31) |
|
|
|
if is_draw_point: |
|
for i, p in enumerate(landmarks): |
|
if keep_landmarks[i]: |
|
cv.circle(image, p, thickness, (0, 0, 255), -1) |
|
|
|
for idx, pose in enumerate(poses): |
|
bbox, landmarks_screen, landmarks_word, mask, heatmap, conf = pose |
|
|
|
edges = cv.Canny(mask, 100, 200) |
|
kernel = np.ones((2, 2), np.uint8) |
|
edges = cv.dilate(edges, kernel, iterations=1) |
|
edges_bgr = cv.cvtColor(edges, cv.COLOR_GRAY2BGR) |
|
edges_bgr[edges == 255] = [0, 255, 0] |
|
display_screen = cv.add(edges_bgr, display_screen) |
|
|
|
|
|
|
|
bbox = bbox.astype(np.int32) |
|
cv.rectangle(display_screen, bbox[0], bbox[1], (0, 255, 0), 2) |
|
cv.putText(display_screen, '{:.4f}'.format(conf), (bbox[0][0], bbox[0][1] + 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255)) |
|
|
|
landmarks_screen = landmarks_screen[:-6, :] |
|
landmarks_word = landmarks_word[:-6, :] |
|
|
|
keep_landmarks = landmarks_screen[:, 4] > 0.8 |
|
|
|
landmarks_screen = landmarks_screen |
|
landmarks_word = landmarks_word |
|
|
|
landmarks_xy = landmarks_screen[:, 0: 2].astype(np.int32) |
|
_draw_lines(display_screen, landmarks_xy, keep_landmarks, is_draw_point=False) |
|
|
|
|
|
for i, p in enumerate(landmarks_screen[:, 0: 3].astype(np.int32)): |
|
if keep_landmarks[i]: |
|
cv.circle(display_screen, np.array([p[0], p[1]]), 2, (0, 0, 255), -1) |
|
|
|
if is_draw is False: |
|
is_draw = True |
|
|
|
landmarks_xy = landmarks_word[:, [0, 1]] |
|
landmarks_xy = (landmarks_xy * 100 + 100).astype(np.int32) |
|
_draw_lines(display_3d, landmarks_xy, keep_landmarks, thickness=2) |
|
|
|
|
|
landmarks_xz = landmarks_word[:, [0, 2]] |
|
landmarks_xz[:, 1] = -landmarks_xz[:, 1] |
|
landmarks_xz = (landmarks_xz * 100 + np.array([300, 100])).astype(np.int32) |
|
_draw_lines(display_3d, landmarks_xz,keep_landmarks, thickness=2) |
|
|
|
|
|
landmarks_yz = landmarks_word[:, [2, 1]] |
|
landmarks_yz[:, 0] = -landmarks_yz[:, 0] |
|
landmarks_yz = (landmarks_yz * 100 + np.array([100, 300])).astype(np.int32) |
|
_draw_lines(display_3d, landmarks_yz, keep_landmarks, thickness=2) |
|
|
|
|
|
landmarks_zy = landmarks_word[:, [2, 1]] |
|
landmarks_zy = (landmarks_zy * 100 + np.array([300, 300])).astype(np.int32) |
|
_draw_lines(display_3d, landmarks_zy, keep_landmarks, thickness=2) |
|
|
|
return display_screen, display_3d |
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
|
|
|
|
person_detector = MPPersonDet(modelPath=mp_model_path, |
|
nmsThreshold=0.3, |
|
scoreThreshold=0.5, |
|
topK=5000, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
pose_estimator = MPPose(modelPath=args.model, |
|
confThreshold=args.conf_threshold, |
|
backendId=backend_id, |
|
targetId=target_id) |
|
|
|
|
|
if args.input is not None: |
|
image = cv.imread(args.input) |
|
|
|
|
|
persons = person_detector.infer(image) |
|
poses = [] |
|
|
|
|
|
for person in persons: |
|
|
|
pose = pose_estimator.infer(image, person) |
|
if pose is not None: |
|
poses.append(pose) |
|
|
|
image, view_3d = visualize(image, poses) |
|
|
|
if len(persons) == 0: |
|
print('No person detected!') |
|
else: |
|
print('Person detected!') |
|
|
|
|
|
if args.save: |
|
cv.imwrite('result.jpg', image) |
|
print('Results saved to result.jpg\n') |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(args.input, image) |
|
cv.imshow('3D Pose Demo', view_3d) |
|
cv.waitKey(0) |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
|
|
tm = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
|
|
persons = person_detector.infer(frame) |
|
poses = [] |
|
|
|
tm.start() |
|
|
|
for person in persons: |
|
|
|
pose = pose_estimator.infer(frame, person) |
|
if pose is not None: |
|
poses.append(pose) |
|
tm.stop() |
|
|
|
frame, view_3d = visualize(frame, poses) |
|
|
|
if len(persons) == 0: |
|
print('No person detected!') |
|
else: |
|
print('Person detected!') |
|
cv.putText(frame, 'FPS: {:.2f}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
|
|
|
cv.imshow('MediaPipe Pose Detection Demo', frame) |
|
cv.imshow('3D Pose Demo', view_3d) |
|
tm.reset() |
|
|