Papers
arxiv:2509.15969

VoXtream: Full-Stream Text-to-Speech with Extremely Low Latency

Published on Sep 19
Authors:
,

Abstract

VoXtream is a real-time, zero-shot text-to-speech system with minimal initial delay, using a combination of incremental phoneme, temporal, and depth transformers.

AI-generated summary

We present VoXtream, a fully autoregressive, zero-shot streaming text-to-speech (TTS) system for real-time use that begins speaking from the first word. VoXtream directly maps incoming phonemes to audio tokens using a monotonic alignment scheme and a dynamic look-ahead that does not delay onset. Built around an incremental phoneme transformer, a temporal transformer predicting semantic and duration tokens, and a depth transformer producing acoustic tokens, VoXtream achieves, to our knowledge, the lowest initial delay among publicly available streaming TTS: 102 ms on GPU. Despite being trained on a mid-scale 9k-hour corpus, it matches or surpasses larger baselines on several metrics, while delivering competitive quality in both output- and full-streaming settings. Demo and code are available at https://herimor.github.io/voxtream.

Community

Sign up or log in to comment

Models citing this paper 2

Datasets citing this paper 1

Spaces citing this paper 1

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.