EGG-SR: Embedding Symbolic Equivalence into Symbolic Regression via Equality Graph
Abstract
EGG-SR framework integrates symbolic equivalence into modern symbolic regression methods to reduce search space and accelerate learning through equality graphs and unified representation.
Symbolic regression seeks to uncover physical laws from experimental data by searching for closed-form expressions, which is an important task in AI-driven scientific discovery. Yet the exponential growth of the search space of expression renders the task computationally challenging. A promising yet underexplored direction for reducing the search space and accelerating training lies in *symbolic equivalence*: many expressions, although syntactically different, define the same function -- for example, log(x_1^2x_2^3), log(x_1^2)+log(x_2^3), and 2log(x_1)+3log(x_2). Existing algorithms treat such variants as distinct outputs, leading to redundant exploration and slow learning. We introduce EGG-SR, a unified framework that integrates symbolic equivalence into a class of modern symbolic regression methods, including Monte Carlo Tree Search (MCTS), Deep Reinforcement Learning (DRL), and Large Language Models (LLMs). EGG-SR compactly represents equivalent expressions through the proposed EGG module (via equality graphs), accelerating learning by: (1) pruning redundant subtree exploration in EGG-MCTS, (2) aggregating rewards across equivalent generated sequences in EGG-DRL, and (3) enriching feedback prompts in EGG-LLM. Theoretically, we show the benefit of embedding EGG into learning: it tightens the regret bound of MCTS and reduces the variance of the DRL gradient estimator. Empirically, EGG-SR consistently enhances a class of symbolic regression models across several benchmarks, discovering more accurate expressions within the same time limit. Project page is at: https://nan-jiang-group.github.io/egg-sr.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper