Papers
arxiv:2601.11557

From HNSW to Information-Theoretic Binarization: Rethinking the Architecture of Scalable Vector Search

Published on Dec 16, 2025
Authors:

Abstract

A novel information-theoretic architecture using maximally informative binarization and bitwise distance metrics achieves low-latency, high-throughput semantic search with deterministic retrieval and reduced operational costs compared to traditional approximate nearest neighbor systems.

AI-generated summary

Modern semantic search and retrieval-augmented generation (RAG) systems rely predominantly on in-memory approximate nearest neighbor (ANN) indexes over high-precision floating-point vectors, resulting in escalating operational cost and inherent trade-offs between latency, throughput, and retrieval accuracy. This paper analyzes the architectural limitations of the dominant "HNSW + float32 + cosine similarity" stack and evaluates existing cost-reduction strategies, including storage disaggregation and lossy vector quantization, which inevitably sacrifice either performance or accuracy. We introduce and empirically evaluate an alternative information-theoretic architecture based on maximally informative binarization (MIB), efficient bitwise distance metrics, and an information-theoretic scoring (ITS) mechanism. Unlike conventional ANN systems, this approach enables exhaustive search over compact binary representations, allowing deterministic retrieval and eliminating accuracy degradation under high query concurrency. Using the MAIR benchmark across 14 datasets and 10,038 queries, we compare this architecture against Elasticsearch, Pinecone, PGVector, and Qdrant. Results demonstrate retrieval quality comparable to full-precision systems, while achieving substantially lower latency and maintaining constant throughput at high request rates. We show that this architectural shift enables a truly serverless, cost-per-query deployment model, challenging the necessity of large in-memory ANN indexes for high-quality semantic search.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2601.11557 in a model README.md to link it from this page.

Datasets citing this paper 3

Spaces citing this paper 1

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.