LookBench: A Live and Holistic Open Benchmark for Fashion Image Retrieval
Abstract
LookBench is a comprehensive fashion image retrieval benchmark that challenges existing models with real-world e-commerce data and AI-generated images, achieving state-of-the-art results through proprietary and open-source models.
In this paper, we present LookBench (We use the term "look" to reflect retrieval that mirrors how people shop -- finding the exact item, a close substitute, or a visually consistent alternative.), a live, holistic and challenging benchmark for fashion image retrieval in real e-commerce settings. LookBench includes both recent product images sourced from live websites and AI-generated fashion images, reflecting contemporary trends and use cases. Each test sample is time-stamped and we intend to update the benchmark periodically, enabling contamination-aware evaluation aligned with declared training cutoffs. Grounded in our fine-grained attribute taxonomy, LookBench covers single-item and outfit-level retrieval across. Our experiments reveal that LookBench poses a significant challenge on strong baselines, with many models achieving below 60% Recall@1. Our proprietary model achieves the best performance on LookBench, and we release an open-source counterpart that ranks second, with both models attaining state-of-the-art results on legacy Fashion200K evaluations. LookBench is designed to be updated semi-annually with new test samples and progressively harder task variants, providing a durable measure of progress. We publicly release our leaderboard, dataset, evaluation code, and trained models.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper