new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 26

Space-time tradeoffs of lenses and optics via higher category theory

Optics and lenses are abstract categorical gadgets that model systems with bidirectional data flow. In this paper we observe that the denotational definition of optics - identifying two optics as equivalent by observing their behaviour from the outside - is not suitable for operational, software oriented approaches where optics are not merely observed, but built with their internal setups in mind. We identify operational differences between denotationally isomorphic categories of cartesian optics and lenses: their different composition rule and corresponding space-time tradeoffs, positioning them at two opposite ends of a spectrum. With these motivations we lift the existing categorical constructions and their relationships to the 2-categorical level, showing that the relevant operational concerns become visible. We define the 2-category 2-Optic(C) whose 2-cells explicitly track optics' internal configuration. We show that the 1-category Optic(C) arises by locally quotienting out the connected components of this 2-category. We show that the embedding of lenses into cartesian optics gets weakened from a functor to an oplax functor whose oplaxator now detects the different composition rule. We determine the difficulties in showing this functor forms a part of an adjunction in any of the standard 2-categories. We establish a conjecture that the well-known isomorphism between cartesian lenses and optics arises out of the lax 2-adjunction between their double-categorical counterparts. In addition to presenting new research, this paper is also meant to be an accessible introduction to the topic.

DTT: An Example-Driven Tabular Transformer for Joinability by Leveraging Large Language Models

Many organizations rely on data from government and third-party sources, and those sources rarely follow the same data formatting. This introduces challenges in integrating data from multiple sources or aligning external sources with internal databases. Commercial database systems do not offer adequate support for integrating data from heterogeneous sources, and manual integration is both time-consuming and inefficient. State-of-the-art data integration approaches that rely on similarity functions and textual transformations often fail to handle challenging cases where multiple mappings are required, or the mappings go beyond simple textual transformations. In this paper, we study the potentials of deep neural models for transforming tables for joinability. In particular, we cast the problem as a prediction task and develop a framework that leverages large deep-learning language models to transform tabular data from a source formatting to a desired target representation. Our framework can efficiently learn the patterns for mapping a source formatting into an expected target using just a few examples, which can then be used for tasks such as table joining, filling in missing values, and error detection. Compared to state-of-the-art mapping and joining approaches, our framework delivers noticeably more accurate and scalable performance on both real-world and synthetic datasets. Our experimental evaluation also shows that the performance of the proposed framework using our fine-tuned model is at par or better than large language models such as GPT-3, despite the significant difference in size, and that using large language models within our framework improves their performance.

Parsed Categoric Encodings with Automunge

The Automunge open source python library platform for tabular data pre-processing automates feature engineering data transformations of numerical encoding and missing data infill to received tidy data on bases fit to properties of columns in a designated train set for consistent and efficient application to subsequent data pipelines such as for inference, where transformations may be applied to distinct columns in "family tree" sets with generations and branches of derivations. Included in the library of transformations are methods to extract structure from bounded categorical string sets by way of automated string parsing, in which comparisons between entries in the set of unique values are parsed to identify character subset overlaps which may be encoded by appended columns of boolean overlap detection activations or by replacing string entries with identified overlap partitions. Further string parsing options, which may also be applied to unbounded categoric sets, include extraction of numeric substring partitions from entries or search functions to identify presence of specified substring partitions. The aggregation of these methods into "family tree" sets of transformations are demonstrated for use to automatically extract structure from categoric string compositions in relation to the set of entries in a column, such as may be applied to prepare categoric string set encodings for machine learning without human intervention.

Benchmarking pre-trained text embedding models in aligning built asset information

Accurate mapping of the built asset information to established data classification systems and taxonomies is crucial for effective asset management, whether for compliance at project handover or ad-hoc data integration scenarios. Due to the complex nature of built asset data, which predominantly comprises technical text elements, this process remains largely manual and reliant on domain expert input. Recent breakthroughs in contextual text representation learning (text embedding), particularly through pre-trained large language models, offer promising approaches that can facilitate the automation of cross-mapping of the built asset data. However, no comprehensive evaluation has yet been conducted to assess these models' ability to effectively represent the complex semantics specific to built asset technical terminology. This study presents a comparative benchmark of state-of-the-art text embedding models to evaluate their effectiveness in aligning built asset information with domain-specific technical concepts. Our proposed datasets are derived from two renowned built asset data classification dictionaries. The results of our benchmarking across six proposed datasets, covering three tasks of clustering, retrieval, and reranking, highlight the need for future research on domain adaptation techniques. The benchmarking resources are published as an open-source library, which will be maintained and extended to support future evaluations in this field.

Category Theory for Quantum Natural Language Processing

This thesis introduces quantum natural language processing (QNLP) models based on a simple yet powerful analogy between computational linguistics and quantum mechanics: grammar as entanglement. The grammatical structure of text and sentences connects the meaning of words in the same way that entanglement structure connects the states of quantum systems. Category theory allows to make this language-to-qubit analogy formal: it is a monoidal functor from grammar to vector spaces. We turn this abstract analogy into a concrete algorithm that translates the grammatical structure onto the architecture of parameterised quantum circuits. We then use a hybrid classical-quantum algorithm to train the model so that evaluating the circuits computes the meaning of sentences in data-driven tasks. The implementation of QNLP models motivated the development of DisCoPy (Distributional Compositional Python), the toolkit for applied category theory of which the first chapter gives a comprehensive overview. String diagrams are the core data structure of DisCoPy, they allow to reason about computation at a high level of abstraction. We show how they can encode both grammatical structures and quantum circuits, but also logical formulae, neural networks or arbitrary Python code. Monoidal functors allow to translate these abstract diagrams into concrete computation, interfacing with optimised task-specific libraries. The second chapter uses DisCopy to implement QNLP models as parameterised functors from grammar to quantum circuits. It gives a first proof-of-concept for the more general concept of functorial learning: generalising machine learning from functions to functors by learning from diagram-like data. In order to learn optimal functor parameters via gradient descent, we introduce the notion of diagrammatic differentiation: a graphical calculus for computing the gradients of parameterised diagrams.

MIGRATION-BENCH: Repository-Level Code Migration Benchmark from Java 8

With the rapid advancement of powerful large language models (LLMs) in recent years, a wide range of software engineering tasks can now be addressed using LLMs, significantly enhancing productivity and scalability. Numerous benchmark datasets have been developed to evaluate the coding capabilities of these models, while they primarily focus on problem-solving and issue-resolution tasks. In contrast, we introduce a new coding benchmark MIGRATION-BENCH with a distinct focus: code migration. MIGRATION-BENCH aims to serve as a comprehensive benchmark for migration from Java 8 to the latest long-term support (LTS) versions (Java 17, 21), MIGRATION-BENCH includes a full dataset and its subset selected with 5,102 and 300 repositories respectively. Selected is a representative subset curated for complexity and difficulty, offering a versatile resource to support research in the field of code migration. Additionally, we provide a comprehensive evaluation framework to facilitate rigorous and standardized assessment of LLMs on this challenging task. We further propose SD-Feedback and demonstrate that LLMs can effectively tackle repository-level code migration to Java 17. For the selected subset with Claude-3.5-Sonnet-v2, SD-Feedback achieves 62.33% and 27.00% success rate (pass@1) for minimal and maximal migration respectively. The benchmark dataset and source code are available at: https://huggingface.co/collections/AmazonScience and https://github.com/amazon-science/self_debug respectively.

Demo of the Linguistic Field Data Management and Analysis System -- LiFE

In the proposed demo, we will present a new software - Linguistic Field Data Management and Analysis System - LiFE (https://github.com/kmi-linguistics/life) - an open-source, web-based linguistic data management and analysis application that allows for systematic storage, management, sharing and usage of linguistic data collected from the field. The application allows users to store lexical items, sentences, paragraphs, audio-visual content with rich glossing / annotation; generate interactive and print dictionaries; and also train and use natural language processing tools and models for various purposes using this data. Since its a web-based application, it also allows for seamless collaboration among multiple persons and sharing the data, models, etc with each other. The system uses the Python-based Flask framework and MongoDB in the backend and HTML, CSS and Javascript at the frontend. The interface allows creation of multiple projects that could be shared with the other users. At the backend, the application stores the data in RDF format so as to allow its release as Linked Data over the web using semantic web technologies - as of now it makes use of the OntoLex-Lemon for storing the lexical data and Ligt for storing the interlinear glossed text and then internally linking it to the other linked lexicons and databases such as DBpedia and WordNet. Furthermore it provides support for training the NLP systems using scikit-learn and HuggingFace Transformers libraries as well as make use of any model trained using these libraries - while the user interface itself provides limited options for tuning the system, an externally-trained model could be easily incorporated within the application; similarly the dataset itself could be easily exported into a standard machine-readable format like JSON or CSV that could be consumed by other programs and pipelines.

FunReason: Enhancing Large Language Models' Function Calling via Self-Refinement Multiscale Loss and Automated Data Refinement

The integration of large language models (LLMs) with function calling has emerged as a crucial capability for enhancing their practical utility in real-world applications. However, effectively combining reasoning processes with accurate function execution remains a significant challenge. Traditional training approaches often struggle to balance the detailed reasoning steps with the precision of function calls, leading to suboptimal performance. To address these limitations, we introduce FunReason, a novel framework that enhances LLMs' function calling capabilities through an automated data refinement strategy and a Self-Refinement Multiscale Loss (SRML) approach. FunReason leverages LLMs' natural reasoning abilities to generate high-quality training examples, focusing on query parseability, reasoning coherence, and function call precision. The SRML approach dynamically balances the contribution of reasoning processes and function call accuracy during training, addressing the inherent trade-off between these two critical aspects. FunReason achieves performance comparable to GPT-4o while effectively mitigating catastrophic forgetting during fine-tuning. FunReason provides a comprehensive solution for enhancing LLMs' function calling capabilities by introducing a balanced training methodology and a data refinement pipeline. For code and dataset, please refer to our repository at GitHub https://github.com/BingguangHao/FunReason

VecCity: A Taxonomy-guided Library for Map Entity Representation Learning

Electronic maps consist of diverse entities, such as points of interest (POIs), road networks, and land parcels, playing a vital role in applications like ITS and LBS. Map entity representation learning (MapRL) generates versatile and reusable data representations, providing essential tools for efficiently managing and utilizing map entity data. Despite the progress in MapRL, two key challenges constrain further development. First, existing research is fragmented, with models classified by the type of map entity, limiting the reusability of techniques across different tasks. Second, the lack of unified benchmarks makes systematic evaluation and comparison of models difficult. To address these challenges, we propose a novel taxonomy for MapRL that organizes models based on functional module-such as encoders, pre-training tasks, and downstream tasks-rather than by entity type. Building on this taxonomy, we present a taxonomy-driven library, VecCity, which offers easy-to-use interfaces for encoding, pre-training, fine-tuning, and evaluation. The library integrates datasets from nine cities and reproduces 21 mainstream MapRL models, establishing the first standardized benchmarks for the field. VecCity also allows users to modify and extend models through modular components, facilitating seamless experimentation. Our comprehensive experiments cover multiple types of map entities and evaluate 21 VecCity pre-built models across various downstream tasks. Experimental results demonstrate the effectiveness of VecCity in streamlining model development and provide insights into the impact of various components on performance. By promoting modular design and reusability, VecCity offers a unified framework to advance research and innovation in MapRL. The code is available at https://github.com/Bigscity-VecCity/VecCity.

Valentine: Evaluating Matching Techniques for Dataset Discovery

Data scientists today search large data lakes to discover and integrate datasets. In order to bring together disparate data sources, dataset discovery methods rely on some form of schema matching: the process of establishing correspondences between datasets. Traditionally, schema matching has been used to find matching pairs of columns between a source and a target schema. However, the use of schema matching in dataset discovery methods differs from its original use. Nowadays schema matching serves as a building block for indicating and ranking inter-dataset relationships. Surprisingly, although a discovery method's success relies highly on the quality of the underlying matching algorithms, the latest discovery methods employ existing schema matching algorithms in an ad-hoc fashion due to the lack of openly-available datasets with ground truth, reference method implementations, and evaluation metrics. In this paper, we aim to rectify the problem of evaluating the effectiveness and efficiency of schema matching methods for the specific needs of dataset discovery. To this end, we propose Valentine, an extensible open-source experiment suite to execute and organize large-scale automated matching experiments on tabular data. Valentine includes implementations of seminal schema matching methods that we either implemented from scratch (due to absence of open source code) or imported from open repositories. The contributions of Valentine are: i) the definition of four schema matching scenarios as encountered in dataset discovery methods, ii) a principled dataset fabrication process tailored to the scope of dataset discovery methods and iii) the most comprehensive evaluation of schema matching techniques to date, offering insight on the strengths and weaknesses of existing techniques, that can serve as a guide for employing schema matching in future dataset discovery methods.

Trans-LoRA: towards data-free Transferable Parameter Efficient Finetuning

Low-rank adapters (LoRA) and their variants are popular parameter-efficient fine-tuning (PEFT) techniques that closely match full model fine-tune performance while requiring only a small number of additional parameters. These additional LoRA parameters are specific to the base model being adapted. When the base model needs to be deprecated and replaced with a new one, all the associated LoRA modules need to be re-trained. Such re-training requires access to the data used to train the LoRA for the original base model. This is especially problematic for commercial cloud applications where the LoRA modules and the base models are hosted by service providers who may not be allowed to host proprietary client task data. To address this challenge, we propose Trans-LoRA -- a novel method for lossless, nearly data-free transfer of LoRAs across base models. Our approach relies on synthetic data to transfer LoRA modules. Using large language models, we design a synthetic data generator to approximate the data-generating process of the observed task data subset. Training on the resulting synthetic dataset transfers LoRA modules to new models. We show the effectiveness of our approach using both LLama and Gemma model families. Our approach achieves lossless (mostly improved) LoRA transfer between models within and across different base model families, and even between different PEFT methods, on a wide variety of tasks.

Herald: A Natural Language Annotated Lean 4 Dataset

Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for these formal languages is the lack of parallel datasets that align natural language with formal language proofs. To address this challenge, this paper introduces a novel framework for translating the Mathlib4 corpus (a unified library of mathematics in formal language Lean 4) into natural language. Building upon this, we employ a dual augmentation strategy that combines tactic-based and informal-based approaches, leveraging the Lean-jixia system, a Lean 4 analyzer. We present the results of this pipeline on Mathlib4 as Herald (Hierarchy and Retrieval-based Translated Lean Dataset). We also propose the Herald Translator, which is fine-tuned on Herald. Herald translator achieves a 93.2% accuracy (Pass@128) on formalizing statements in the miniF2F-test and a 22.5% accuracy on our internal graduate-level textbook dataset, outperforming InternLM2-Math-Plus-7B (74.0% and 7.5%) and TheoremLlama (50.1% and 4.0%). Furthermore, we propose a section-level translation framework for real-world applications. As a direct application of Herald translator, we have successfully translated a template section in the Stack project, marking a notable progress in the automatic formalization of graduate-level mathematical literature. Our model, along with the datasets, will be open-sourced to the public soon.

CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation

C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.

EVOC2RUST: A Skeleton-guided Framework for Project-Level C-to-Rust Translation

Rust's compile-time safety guarantees make it ideal for safety-critical systems, creating demand for translating legacy C codebases to Rust. While various approaches have emerged for this task, they face inherent trade-offs: rule-based solutions face challenges in meeting code safety and idiomaticity requirements, while LLM-based solutions often fail to generate semantically equivalent Rust code, due to the heavy dependencies of modules across the entire codebase. Recent studies have revealed that both solutions are limited to small-scale programs. In this paper, we propose EvoC2Rust, an automated framework for converting entire C projects to equivalent Rust ones. EvoC2Rust employs a skeleton-guided translation strategy for project-level translation. The pipeline consists of three evolutionary stages: 1) it first decomposes the C project into functional modules, employs a feature-mapping-enhanced LLM to transform definitions and macros and generates type-checked function stubs, which form a compilable Rust skeleton; 2) it then incrementally translates the function, replacing the corresponding stub placeholder; 3) finally, it repairs compilation errors by integrating LLM and static analysis. Through evolutionary augmentation, EvoC2Rust combines the advantages of both rule-based and LLM-based solutions. Our evaluation on open-source benchmarks and six industrial projects demonstrates EvoC2Rust's superior performance in project-level C-to-Rust translation. On average, it achieves 17.24% and 14.32% improvements in syntax and semantic accuracy over the LLM-based approaches, along with a 96.79% higher code safety rate than the rule-based tools. At the module level, EvoC2Rust reaches 92.25% compilation and 89.53% test pass rates on industrial projects, even for complex codebases and long functions.

A Change Language for Ontologies and Knowledge Graphs

Ontologies and knowledge graphs (KGs) are general-purpose computable representations of some domain, such as human anatomy, and are frequently a crucial part of modern information systems. Most of these structures change over time, incorporating new knowledge or information that was previously missing. Managing these changes is a challenge, both in terms of communicating changes to users, and providing mechanisms to make it easier for multiple stakeholders to contribute. To fill that need, we have created KGCL, the Knowledge Graph Change Language, a standard data model for describing changes to KGs and ontologies at a high level, and an accompanying human-readable controlled natural language. This language serves two purposes: a curator can use it to request desired changes, and it can also be used to describe changes that have already happened, corresponding to the concepts of "apply patch" and "diff" commonly used for managing changes in text documents and computer programs. Another key feature of KGCL is that descriptions are at a high enough level to be useful and understood by a variety of stakeholders--for example, ontology edits can be specified by commands like "add synonym 'arm' to 'forelimb'" or "move 'Parkinson disease' under 'neurodegenerative disease'". We have also built a suite of tools for managing ontology changes. These include an automated agent that integrates with and monitors GitHub ontology repositories and applies any requested changes, and a new component in the BioPortal ontology resource that allows users to make change requests directly from within the BioPortal user interface. Overall, the KGCL data model, its controlled natural language, and associated tooling allow for easier management and processing of changes associated with the development of ontologies and KGs.

Unified Functional Hashing in Automatic Machine Learning

The field of Automatic Machine Learning (AutoML) has recently attained impressive results, including the discovery of state-of-the-art machine learning solutions, such as neural image classifiers. This is often done by applying an evolutionary search method, which samples multiple candidate solutions from a large space and evaluates the quality of each candidate through a long training process. As a result, the search tends to be slow. In this paper, we show that large efficiency gains can be obtained by employing a fast unified functional hash, especially through the functional equivalence caching technique, which we also present. The central idea is to detect by hashing when the search method produces equivalent candidates, which occurs very frequently, and this way avoid their costly re-evaluation. Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently, and it is "unified" in that the same algorithm can hash arbitrary representations; e.g. compute graphs, imperative code, or lambda functions. As evidence, we show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery. Finally, we consider the effect of hash collisions, evaluation noise, and search distribution through empirical analysis. Altogether, we hope this paper may serve as a guide to hashing techniques in AutoML.

EvolveDirector: Approaching Advanced Text-to-Image Generation with Large Vision-Language Models

Recent advancements in generation models have showcased remarkable capabilities in generating fantastic content. However, most of them are trained on proprietary high-quality data, and some models withhold their parameters and only provide accessible application programming interfaces (APIs), limiting their benefits for downstream tasks. To explore the feasibility of training a text-to-image generation model comparable to advanced models using publicly available resources, we introduce EvolveDirector. This framework interacts with advanced models through their public APIs to obtain text-image data pairs to train a base model. Our experiments with extensive data indicate that the model trained on generated data of the advanced model can approximate its generation capability. However, it requires large-scale samples of 10 million or more. This incurs significant expenses in time, computational resources, and especially the costs associated with calling fee-based APIs. To address this problem, we leverage pre-trained large vision-language models (VLMs) to guide the evolution of the base model. VLM continuously evaluates the base model during training and dynamically updates and refines the training dataset by the discrimination, expansion, deletion, and mutation operations. Experimental results show that this paradigm significantly reduces the required data volume. Furthermore, when approaching multiple advanced models, EvolveDirector can select the best samples generated by them to learn powerful and balanced abilities. The final trained model Edgen is demonstrated to outperform these advanced models. The code and model weights are available at https://github.com/showlab/EvolveDirector.

DiscoveryBench: Towards Data-Driven Discovery with Large Language Models

Can the rapid advances in code generation, function calling, and data analysis using large language models (LLMs) help automate the search and verification of hypotheses purely from a set of provided datasets? To evaluate this question, we present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery. The benchmark is designed to systematically assess current model capabilities in discovery tasks and provide a useful resource for improving them. Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering, by manually deriving discovery workflows from published papers to approximate the real-world challenges faced by researchers, where each task is defined by a dataset, its metadata, and a discovery goal in natural language. We additionally provide 903 synthetic tasks to conduct controlled evaluations across task complexity. Furthermore, our structured formalism of data-driven discovery enables a facet-based evaluation that provides useful insights into different failure modes. We evaluate several popular LLM-based reasoning frameworks using both open and closed LLMs as baselines on DiscoveryBench and find that even the best system scores only 25%. Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.

CrackSQL: A Hybrid SQL Dialect Translation System Powered by Large Language Models

Dialect translation plays a key role in enabling seamless interaction across heterogeneous database systems. However, translating SQL queries between different dialects (e.g., from PostgreSQL to MySQL) remains a challenging task due to syntactic discrepancies and subtle semantic variations. Existing approaches including manual rewriting, rule-based systems, and large language model (LLM)-based techniques often involve high maintenance effort (e.g., crafting custom translation rules) or produce unreliable results (e.g., LLM generates non-existent functions), especially when handling complex queries. In this demonstration, we present CrackSQL, the first hybrid SQL dialect translation system that combines rule and LLM-based methods to overcome these limitations. CrackSQL leverages the adaptability of LLMs to minimize manual intervention, while enhancing translation accuracy by segmenting lengthy complex SQL via functionality-based query processing. To further improve robustness, it incorporates a novel cross-dialect syntax embedding model for precise syntax alignment, as well as an adaptive local-to-global translation strategy that effectively resolves interdependent query operations. CrackSQL supports three translation modes and offers multiple deployment and access options including a web console interface, a PyPI package, and a command-line prompt, facilitating adoption across a variety of real-world use cases

LLM See, LLM Do: Guiding Data Generation to Target Non-Differentiable Objectives

The widespread adoption of synthetic data raises new questions about how models generating the data can influence other large language models (LLMs) via distilled data. To start, our work exhaustively characterizes the impact of passive inheritance of model properties by systematically studying the consequences of synthetic data integration. We provide one of the most comprehensive studies to-date of how the source of synthetic data shapes models' internal biases, calibration and generations' textual attributes and preferences. We find that models are surprisingly sensitive towards certain attributes even when the synthetic data prompts appear "neutral". which invites the question whether this sensitivity can be exploited for good. Our findings invite the question can we explicitly steer the models towards the properties we want at test time by exploiting the data generation process? This would have historically been considered infeasible due to the cost of collecting data with a specific characteristic or objective in mind. However, improvement in the quality of synthetic data, as well as a shift towards general-purpose models designed to follow a diverse way of instructions, means this question is timely. We propose active inheritance as a term to describe intentionally constraining synthetic data according to a non-differentiable objective. We demonstrate how active inheritance can steer the generation profiles of models towards desirable non-differentiable attributes, e.g. high lexical diversity or low toxicity.

Linking Datasets on Organizations Using Half A Billion Open Collaborated Records

Scholars studying organizations often work with multiple datasets lacking shared unique identifiers or covariates. In such situations, researchers may turn to approximate string matching methods to combine datasets. String matching, although useful, faces fundamental challenges. Even when two strings appear similar to humans, fuzzy matching often does not work because it fails to adapt to the informativeness of the character combinations presented. Worse, many entities have multiple names that are dissimilar (e.g., "Fannie Mae" and "Federal National Mortgage Association"), a case where string matching has little hope of succeeding. This paper introduces data from a prominent employment-related networking site (LinkedIn) as a tool to address these problems. We propose interconnected approaches to leveraging the massive amount of information from LinkedIn regarding organizational name-to-name links. The first approach builds a machine learning model for predicting matches from character strings, treating the trillions of user-contributed organizational name pairs as a training corpus: this approach constructs a string matching metric that explicitly maximizes match probabilities. A second approach identifies relationships between organization names using network representations of the LinkedIn data. A third approach combines the first and second. We document substantial improvements over fuzzy matching in applications, making all methods accessible in open-source software ("LinkOrgs").

KramaBench: A Benchmark for AI Systems on Data-to-Insight Pipelines over Data Lakes

Constructing real-world data-to-insight pipelines often involves data extraction from data lakes, data integration across heterogeneous data sources, and diverse operations from data cleaning to analysis. The design and implementation of data science pipelines require domain knowledge, technical expertise, and even project-specific insights. AI systems have shown remarkable reasoning, coding, and understanding capabilities. However, it remains unclear to what extent these capabilities translate into successful design and execution of such complex pipelines. We introduce KRAMABENCH: a benchmark composed of 104 manually-curated real-world data science pipelines spanning 1700 data files from 24 data sources in 6 different domains. We show that these pipelines test the end-to-end capabilities of AI systems on data processing, requiring data discovery, wrangling and cleaning, efficient processing, statistical reasoning, and orchestrating data processing steps given a high-level task. Our evaluation tests 5 general models and 3 code generation models using our reference framework, DS-GURU, which instructs the AI model to decompose a question into a sequence of subtasks, reason through each step, and synthesize Python code that implements the proposed design. Our results on KRAMABENCH show that, although the models are sufficiently capable of solving well-specified data science code generation tasks, when extensive data processing and domain knowledge are required to construct real-world data science pipelines, existing out-of-box models fall short. Progress on KramaBench represents crucial steps towards developing autonomous data science agents for real-world applications. Our code, reference framework, and data are available at https://github.com/mitdbg/KramaBench.

From Commands to Prompts: LLM-based Semantic File System for AIOS

Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.

LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL

Schema linking is a critical bottleneck in applying existing Text-to-SQL models to real-world, large-scale, multi-database environments. Through error analysis, we identify two major challenges in schema linking: (1) Database Retrieval: accurately selecting the target database from a large schema pool, while effectively filtering out irrelevant ones; and (2) Schema Item Grounding: precisely identifying the relevant tables and columns within complex and often redundant schemas for SQL generation. Based on these, we introduce LinkAlign, a novel framework tailored for large-scale databases with thousands of fields. LinkAlign comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. Each stage supports both Agent and Pipeline execution modes, enabling balancing efficiency and performance via modular design. To enable more realistic evaluation, we construct AmbiDB, a synthetic dataset designed to reflect the ambiguity of real-world schema linking. Experiments on widely-used Text-to-SQL benchmarks demonstrate that LinkAlign consistently outperforms existing baselines on all schema linking metrics. Notably, it improves the overall Text-to-SQL pipeline and achieves a new state-of-the-art score of 33.09% on the Spider 2.0-Lite benchmark using only open-source LLMs, ranking first on the leaderboard at the time of submission. The codes are available at https://github.com/Satissss/LinkAlign

Matching Table Metadata with Business Glossaries Using Large Language Models

Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.

Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation Models

The burgeoning field of foundation models necessitates advanced data processing mechanisms capable of harnessing vast and valuable data with various types used by these models. Nevertheless, the current landscape presents unique challenges that traditional data processing frameworks struggle to handle effectively, particularly in handling the complexity of multimodal data. In response, we present Data-Juicer 2.0, a data processing system backed by 100+ data processing operators spanning text, image, video, and audio modalities, supporting more critical tasks including data analysis, synthesis, annotation, and foundation model post-training. With seamless compatibility and dedicated optimization for popular dataset hubs like Hugging Face and computing engines like Ray, it improves upon its predecessor in terms of usability, efficiency, and programmability. It features an easily accessible user interface layer that supports decoupled Python interactions, RESTful APIs, and conversational commands. It contains a new runtime layer optimized for adaptive execution and management across varying dataset scales, processing demands, and computational environments, while hiding unnecessary system details. Extensive empirical evaluations demonstrate Data-Juicer 2.0's remarkable performance and scalability, highlighting its capability to efficiently process TB-level data with 10k+ CPU cores. The system is publicly available and has been widely adopted in diverse research fields and real-world products such as Alibaba Cloud PAI. We actively maintain it and share insights from practical feedback, with the goal of facilitating research and application of next-generation foundation models.

Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms

Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids clustering. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not exist for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains and applications. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm that achieve an O(k)-fold speedup in the second ("SWAP") phase of the algorithm, but will still find the same results as the original PAM algorithm. If we relax the choice of swaps performed (while retaining comparable quality), we can further accelerate the algorithm by eagerly performing additional swaps in each iteration. With the substantially faster SWAP, we can now explore faster initialization strategies, because (i) the classic ("BUILD") initialization now becomes the bottleneck, and (ii) our swap is fast enough to compensate for worse starting conditions. We also show how the CLARA and CLARANS algorithms benefit from the proposed modifications. While we do not study the parallelization of our approach in this work, it can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100,200, we observed a 458x respectively 1191x speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets, and in particular to higher k.

TaxoAdapt: Aligning LLM-Based Multidimensional Taxonomy Construction to Evolving Research Corpora

The rapid evolution of scientific fields introduces challenges in organizing and retrieving scientific literature. While expert-curated taxonomies have traditionally addressed this need, the process is time-consuming and expensive. Furthermore, recent automatic taxonomy construction methods either (1) over-rely on a specific corpus, sacrificing generalizability, or (2) depend heavily on the general knowledge of large language models (LLMs) contained within their pre-training datasets, often overlooking the dynamic nature of evolving scientific domains. Additionally, these approaches fail to account for the multi-faceted nature of scientific literature, where a single research paper may contribute to multiple dimensions (e.g., methodology, new tasks, evaluation metrics, benchmarks). To address these gaps, we propose TaxoAdapt, a framework that dynamically adapts an LLM-generated taxonomy to a given corpus across multiple dimensions. TaxoAdapt performs iterative hierarchical classification, expanding both the taxonomy width and depth based on corpus' topical distribution. We demonstrate its state-of-the-art performance across a diverse set of computer science conferences over the years to showcase its ability to structure and capture the evolution of scientific fields. As a multidimensional method, TaxoAdapt generates taxonomies that are 26.51% more granularity-preserving and 50.41% more coherent than the most competitive baselines judged by LLMs.

FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset

The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.

CodeTransOcean: A Comprehensive Multilingual Benchmark for Code Translation

Recent code translation techniques exploit neural machine translation models to translate source code from one programming language to another to satisfy production compatibility or to improve efficiency of codebase maintenance. Most existing code translation datasets only focus on a single pair of popular programming languages. To advance research on code translation and meet diverse requirements of real-world applications, we construct CodeTransOcean, a large-scale comprehensive benchmark that supports the largest variety of programming languages for code translation. CodeTransOcean consists of three novel multilingual datasets, namely, MultilingualTrans supporting translations between multiple popular programming languages, NicheTrans for translating between niche programming languages and popular ones, and LLMTrans for evaluating executability of translated code by large language models (LLMs). CodeTransOcean also includes a novel cross-framework dataset, DLTrans, for translating deep learning code across different frameworks. We develop multilingual modeling approaches for code translation and demonstrate their great potential in improving the translation quality of both low-resource and high-resource language pairs and boosting the training efficiency. We also propose a novel evaluation metric Debugging Success Rate@K for program-level code translation. Last but not least, we evaluate LLM ChatGPT on our datasets and investigate its potential for fuzzy execution predictions. We build baselines for CodeTransOcean and analyze challenges of code translation for guiding future research. The CodeTransOcean datasets and code are publicly available at https://github.com/WeixiangYAN/CodeTransOcean.

Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation

Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.

Advancing vision-language models in front-end development via data synthesis

Modern front-end (FE) development, especially when leveraging the unique features of frameworks like React and Vue, presents distinctive challenges. These include managing modular architectures, ensuring synchronization between data and visual outputs for declarative rendering, and adapting reusable components to various scenarios. Such complexities make it particularly difficult for state-of-the-art large vision-language models (VLMs) to generate accurate and functional code directly from design images. To address these challenges, we propose a reflective agentic workflow that synthesizes high-quality image-text data to capture the diverse characteristics of FE development. This workflow automates the extraction of self-containedA \textbf{self-contained code snippet is one that encapsulates all necessary logic, styling, and dependencies, ensuring it functions independently without requiring external imports or context.} code snippets from real-world projects, renders the corresponding visual outputs, and generates detailed descriptions that link design elements to functional code. To further expand the scope and utility of the synthesis, we introduce three data synthesis strategies: Evolution-based synthesis, which enables scalable and diverse dataset expansion; Waterfall-Model-based synthesis, which generates logically coherent code derived from system requirements; and Additive Development synthesis, which iteratively increases the complexity of human-authored components. We build a large vision-language model, Flame, trained on the synthesized datasets and demonstrate its effectiveness in generating React code via the pass@k metric. Our results suggest that a code VLM trained to interpret images before code generation may achieve better performance.

Towards Identifiable Unsupervised Domain Translation: A Diversified Distribution Matching Approach

Unsupervised domain translation (UDT) aims to find functions that convert samples from one domain (e.g., sketches) to another domain (e.g., photos) without changing the high-level semantic meaning (also referred to as ``content''). The translation functions are often sought by probability distribution matching of the transformed source domain and target domain. CycleGAN stands as arguably the most representative approach among this line of work. However, it was noticed in the literature that CycleGAN and variants could fail to identify the desired translation functions and produce content-misaligned translations. This limitation arises due to the presence of multiple translation functions -- referred to as ``measure-preserving automorphism" (MPA) -- in the solution space of the learning criteria. Despite awareness of such identifiability issues, solutions have remained elusive. This study delves into the core identifiability inquiry and introduces an MPA elimination theory. Our analysis shows that MPA is unlikely to exist, if multiple pairs of diverse cross-domain conditional distributions are matched by the learning function. Our theory leads to a UDT learner using distribution matching over auxiliary variable-induced subsets of the domains -- other than over the entire data domains as in the classical approaches. The proposed framework is the first to rigorously establish translation identifiability under reasonable UDT settings, to our best knowledge. Experiments corroborate with our theoretical claims.

Observatory: Characterizing Embeddings of Relational Tables

Language models and specialized table embedding models have recently demonstrated strong performance on many tasks over tabular data. Researchers and practitioners are keen to leverage these models in many new application contexts; but limited understanding of the strengths and weaknesses of these models, and the table representations they generate, makes the process of finding a suitable model for a given task reliant on trial and error. There is an urgent need to gain a comprehensive understanding of these models to minimize inefficiency and failures in downstream usage. To address this need, we propose Observatory, a formal framework to systematically analyze embedding representations of relational tables. Motivated both by invariants of the relational data model and by statistical considerations regarding data distributions, we define eight primitive properties, and corresponding measures to quantitatively characterize table embeddings for these properties. Based on these properties, we define an extensible framework to evaluate language and table embedding models. We collect and synthesize a suite of datasets and use Observatory to analyze nine such models. Our analysis provides insights into the strengths and weaknesses of learned representations over tables. We find, for example, that some models are sensitive to table structure such as column order, that functional dependencies are rarely reflected in embeddings, and that specialized table embedding models have relatively lower sample fidelity. Such insights help researchers and practitioners better anticipate model behaviors and select appropriate models for their downstream tasks, while guiding researchers in the development of new models.

MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts

Understanding the performance of machine learning models across diverse data distributions is critically important for reliable applications. Motivated by this, there is a growing focus on curating benchmark datasets that capture distribution shifts. While valuable, the existing benchmarks are limited in that many of them only contain a small number of shifts and they lack systematic annotation about what is different across different shifts. We present MetaShift--a collection of 12,868 sets of natural images across 410 classes--to address this challenge. We leverage the natural heterogeneity of Visual Genome and its annotations to construct MetaShift. The key construction idea is to cluster images using its metadata, which provides context for each image (e.g. "cats with cars" or "cats in bathroom") that represent distinct data distributions. MetaShift has two important benefits: first, it contains orders of magnitude more natural data shifts than previously available. Second, it provides explicit explanations of what is unique about each of its data sets and a distance score that measures the amount of distribution shift between any two of its data sets. We demonstrate the utility of MetaShift in benchmarking several recent proposals for training models to be robust to data shifts. We find that the simple empirical risk minimization performs the best when shifts are moderate and no method had a systematic advantage for large shifts. We also show how MetaShift can help to visualize conflicts between data subsets during model training.

DocCGen: Document-based Controlled Code Generation

Recent developments show that Large Language Models (LLMs) produce state-of-the-art performance on natural language (NL) to code generation for resource-rich general-purpose languages like C++, Java, and Python. However, their practical usage for structured domain-specific languages (DSLs) such as YAML, JSON is limited due to domain-specific schema, grammar, and customizations generally unseen by LLMs during pre-training. Efforts have been made to mitigate this challenge via in-context learning through relevant examples or by fine-tuning. However, it suffers from problems, such as limited DSL samples and prompt sensitivity but enterprises maintain good documentation of the DSLs. Therefore, we propose DocCGen, a framework that can leverage such rich knowledge by breaking the NL-to-Code generation task for structured code languages into a two-step process. First, it detects the correct libraries using the library documentation that best matches the NL query. Then, it utilizes schema rules extracted from the documentation of these libraries to constrain the decoding. We evaluate our framework for two complex structured languages, Ansible YAML and Bash command, consisting of two settings: Out-of-domain (OOD) and In-domain (ID). Our extensive experiments show that DocCGen consistently improves different-sized language models across all six evaluation metrics, reducing syntactic and semantic errors in structured code. We plan to open-source the datasets and code to motivate research in constrained code generation.

Lunguage: A Benchmark for Structured and Sequential Chest X-ray Interpretation

Radiology reports convey detailed clinical observations and capture diagnostic reasoning that evolves over time. However, existing evaluation methods are limited to single-report settings and rely on coarse metrics that fail to capture fine-grained clinical semantics and temporal dependencies. We introduce LUNGUAGE,a benchmark dataset for structured radiology report generation that supports both single-report evaluation and longitudinal patient-level assessment across multiple studies. It contains 1,473 annotated chest X-ray reports, each reviewed by experts, and 80 of them contain longitudinal annotations to capture disease progression and inter-study intervals, also reviewed by experts. Using this benchmark, we develop a two-stage framework that transforms generated reports into fine-grained, schema-aligned structured representations, enabling longitudinal interpretation. We also propose LUNGUAGESCORE, an interpretable metric that compares structured outputs at the entity, relation, and attribute level while modeling temporal consistency across patient timelines. These contributions establish the first benchmark dataset, structuring framework, and evaluation metric for sequential radiology reporting, with empirical results demonstrating that LUNGUAGESCORE effectively supports structured report evaluation. The code is available at: https://github.com/SuperSupermoon/Lunguage

RustMap: Towards Project-Scale C-to-Rust Migration via Program Analysis and LLM

Migrating existing C programs into Rust is increasingly desired, as Rust offers superior memory safety while maintaining C's high performance. However, vastly different features between C and Rust--e.g., distinct definitions and usages of pointers and references--pose significant challenges beyond mere syntactic translation. Existing automated translation tools, such as C2Rust, may rely too much on syntactic, template-based translation and generate unsafe Rust code that is hard for human developers to read, maintain, or even compile. More semantic-aware translation that produces safer, idiomatic, and runnable Rust code is much needed. This paper introduces a novel dependency-guided and large language model (LLM)-based C-to-Rust translation approach, RustMap, based on three key ideas: (1) Utilize LLM capabilities to produce idiomatic Rust code from given small pieces of C code, (2) Mitigate LLM limitations in handling large codebases by breaking project-scale C programs into smaller units for translation according to their usage dependencies and composing them into a runnable Rust program, and (3) Enhance the correctness of the translated Rust program by using test cases to check input/output equivalence, isolate faulty code when execution states deviate, and iteratively refine the translation using feedback from compilation and test errors. We empirically evaluate RustMap on 126 real-world programs, including 125 from Rosetta Code and a 7000+ line bzip2 implementation using GPT-4o as the LLM. RustMap shows promising results, guiding GPT-4o to produce idiomatic, readable, and functional Rust code with significantly less unsafe code than other tools, and revealing non-trivial translation patterns reusable for future research.

Query Rewriting via LLMs

Query rewriting is a classical technique for transforming complex declarative SQL queries into ``lean'' equivalents that are conducive to (a) faster execution from a performance perspective, and (b) better understanding from a developer perspective. The rewriting is typically achieved via transformation rules, but these rules are limited in scope and difficult to update in a production system. In recent times, LLM-based techniques have also been mooted, but they are prone to both semantic and syntactic errors. We investigate here, how the remarkable cognitive capabilities of LLMs can be leveraged for performant query rewriting while incorporating safeguards and optimizations to ensure correctness and efficiency. Our study shows that these goals can be progressively achieved through incorporation of (a) an ensemble suite of basic prompts, (b) database-sensitive prompts via redundancy removal and selectivity-based rewriting rules, and (c) LLM token probability-guided rewrite paths. Further, a suite of statistical and logic-based tools can be used to guard against errors produced by the model. We have implemented the above LLM-infused techniques in the LITHE system, and evaluated complex analytic queries from multiple benchmarks on contemporary database platforms. The results show significant improvements over SOTA rewriting techniques -- for instance, on TPC-DS, LITHE constructed productive (>1.5x speedup) rewrites for two-thirds of the query suite, delivering four times more coverage than SOTA. Further, the geometric mean of its estimated execution speedups was an order-of-magnitude jump over SOTA performance. In essence, LITHE offers a potent and robust LLM-based intermediary between enterprise applications and database engines.

DFIN-SQL: Integrating Focused Schema with DIN-SQL for Superior Accuracy in Large-Scale Databases

The task of converting natural language queries into SQL queries is intricate, necessitating a blend of precise techniques for an accurate translation. The DIN-SQL (Decomposed-In-Context SQL) methodology represents a significant development in this domain. This paper introduces DFIN (Decomposed Focused-In-Context), an innovative extension of DIN-SQL that enhances Text-to-SQL conversion by addressing schema linking errors, which are a major source of inaccuracies. DFIN uniquely alternates between prompting techniques and Retrieval-Augmented Generation (RAG), adapting to the size and complexity of the database schema. A preprocessing phase embeds database definitions and leverages annotated files, akin to those in the BIRD dataset, facilitating the runtime retrieval of pertinent schema information. This strategy significantly reduces the token count for schema linking prompts, enabling the use of a standard GPT-4 model over its larger context variant, thus handling large-scale databases more effectively and economically. Our evaluation on the BIRD dataset, a challenging real-world benchmark, demonstrates that DFIN not only scales efficiently but also improves accuracy, achieving a score of 51.69. This improvement surpasses DIN-SQL method (the current third-place), which is the highest-ranked model employing in-context learning rather than fine-tuning, previously scoring 50.72. The advancement of DFIN underscores the evolving capabilities of in-context learning methodologies combined with advanced language models, offering a promising avenue for future research in complex Text-to-SQL conversion tasks.

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation

While knowledge distillation (transfer) has been attracting attentions from the research community, the recent development in the fields has heightened the need for reproducible studies and highly generalized frameworks to lower barriers to such high-quality, reproducible deep learning research. Several researchers voluntarily published frameworks used in their knowledge distillation studies to help other interested researchers reproduce their original work. Such frameworks, however, are usually neither well generalized nor maintained, thus researchers are still required to write a lot of code to refactor/build on the frameworks for introducing new methods, models, datasets and designing experiments. In this paper, we present our developed open-source framework built on PyTorch and dedicated for knowledge distillation studies. The framework is designed to enable users to design experiments by declarative PyYAML configuration files, and helps researchers complete the recently proposed ML Code Completeness Checklist. Using the developed framework, we demonstrate its various efficient training strategies, and implement a variety of knowledge distillation methods. We also reproduce some of their original experimental results on the ImageNet and COCO datasets presented at major machine learning conferences such as ICLR, NeurIPS, CVPR and ECCV, including recent state-of-the-art methods. All the source code, configurations, log files and trained model weights are publicly available at https://github.com/yoshitomo-matsubara/torchdistill .

Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models

Even for a conservative estimate, 80% of enterprise data reside in unstructured files, stored in data lakes that accommodate heterogeneous formats. Classical search engines can no longer meet information seeking needs, especially when the task is to browse and explore for insight formulation. In other words, there are no obvious search keywords to use. Knowledge graphs, due to their natural visual appeals that reduce the human cognitive load, become the winning candidate for heterogeneous data integration and knowledge representation. In this paper, we introduce Docs2KG, a novel framework designed to extract multimodal information from diverse and heterogeneous unstructured documents, including emails, web pages, PDF files, and Excel files. Dynamically generates a unified knowledge graph that represents the extracted key information, Docs2KG enables efficient querying and exploration of document data lakes. Unlike existing approaches that focus on domain-specific data sources or pre-designed schemas, Docs2KG offers a flexible and extensible solution that can adapt to various document structures and content types. The proposed framework unifies data processing supporting a multitude of downstream tasks with improved domain interpretability. Docs2KG is publicly accessible at https://docs2kg.ai4wa.com, and a demonstration video is available at https://docs2kg.ai4wa.com/Video.

ComPile: A Large IR Dataset from Production Sources

Code is increasingly becoming a core data modality of modern machine learning research impacting not only the way we write code with conversational agents like OpenAI's ChatGPT, Google's Bard, or Anthropic's Claude, the way we translate code from one language into another, but also the compiler infrastructure underlying the language. While modeling approaches may vary and representations differ, the targeted tasks often remain the same within the individual classes of models. Relying solely on the ability of modern models to extract information from unstructured code does not take advantage of 70 years of programming language and compiler development by not utilizing the structure inherent to programs in the data collection. This detracts from the performance of models working over a tokenized representation of input code and precludes the use of these models in the compiler itself. To work towards the first intermediate representation (IR) based models, we fully utilize the LLVM compiler infrastructure, shared by a number of languages, to generate a 182B token dataset of LLVM IR. We generated this dataset from programming languages built on the shared LLVM infrastructure, including Rust, Swift, Julia, and C/C++, by hooking into LLVM code generation either through the language's package manager or the compiler directly to extract the dataset of intermediate representations from production grade programs. Statistical analysis proves the utility of our dataset not only for large language model training, but also for the introspection into the code generation process itself with the dataset showing great promise for machine-learned compiler components.

Lessons Learned from Mining the Hugging Face Repository

The rapidly evolving fields of Machine Learning (ML) and Artificial Intelligence have witnessed the emergence of platforms like Hugging Face (HF) as central hubs for model development and sharing. This experience report synthesizes insights from two comprehensive studies conducted on HF, focusing on carbon emissions and the evolutionary and maintenance aspects of ML models. Our objective is to provide a practical guide for future researchers embarking on mining software repository studies within the HF ecosystem to enhance the quality of these studies. We delve into the intricacies of the replication package used in our studies, highlighting the pivotal tools and methodologies that facilitated our analysis. Furthermore, we propose a nuanced stratified sampling strategy tailored for the diverse HF Hub dataset, ensuring a representative and comprehensive analytical approach. The report also introduces preliminary guidelines, transitioning from repository mining to cohort studies, to establish causality in repository mining studies, particularly within the ML model of HF context. This transition is inspired by existing frameworks and is adapted to suit the unique characteristics of the HF model ecosystem. Our report serves as a guiding framework for researchers, contributing to the responsible and sustainable advancement of ML, and fostering a deeper understanding of the broader implications of ML models.

On the Anatomy of Real-World R Code for Static Analysis

CONTEXT The R programming language has a huge and active community, especially in the area of statistical computing. Its interpreted nature allows for several interesting constructs, like the manipulation of functions at run-time, that hinder the static analysis of R programs. At the same time, there is a lack of existing research regarding how these features, or even the R language as a whole are used in practice. OBJECTIVE In this paper, we conduct a large-scale, static analysis of more than 50 million lines of real-world R programs and packages to identify their characteristics and the features that are actually used. Moreover, we compare the similarities and differences between the scripts of R users and the implementations of package authors. We provide insights for static analysis tools like the lintr package as well as potential interpreter optimizations and uncover areas for future research. METHOD We analyze 4230 R scripts submitted alongside publications and the sources of 19450 CRAN packages for over 350000 R files, collecting and summarizing quantitative information for features of interest. RESULTS We find a high frequency of name-based indexing operations, assignments, and loops, but a low frequency for most of R's reflective functions. Furthermore, we find neither testing functions nor many calls to R's foreign function interface (FFI) in the publication submissions. CONCLUSION R scripts and package sources differ, for example, in their size, the way they include other packages, and their usage of R's reflective capabilities. We provide features that are used frequently and should be prioritized by static analysis tools, like operator assignments, function calls, and certain reflective functions like load.

LLM-Assisted Code Cleaning For Training Accurate Code Generators

Natural language to code generation is an important application area of LLMs and has received wide attention from the community. The majority of relevant studies have exclusively concentrated on increasing the quantity and functional correctness of training sets while disregarding other stylistic elements of programs. More recently, data quality has garnered a lot of interest and multiple works have showcased its importance for improving performance. In this work, we investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system. We build a novel data-cleaning pipeline that uses these principles to transform existing programs by 1.) renaming variables, 2.) modularizing and decomposing complex code into smaller helper sub-functions, and 3.) inserting natural-language based plans via LLM based transformations. We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B on our transformed modularized programs improves the performance by up to 30% compared to fine-tuning on the original dataset. Additionally, we demonstrate improved performance from using a smaller amount of higher-quality data, finding that a model fine-tuned on the entire original dataset is outperformed by a model trained on 15% of our cleaned dataset. Even in comparison to closed-source models, our models outperform the much larger AlphaCoder models.

DB-GPT: Empowering Database Interactions with Private Large Language Models

The recent breakthroughs in large language models (LLMs) are positioned to transition many areas of software. Database technologies particularly have an important entanglement with LLMs as efficient and intuitive database interactions are paramount. In this paper, we present DB-GPT, a revolutionary and production-ready project that integrates LLMs with traditional database systems to enhance user experience and accessibility. DB-GPT is designed to understand natural language queries, provide context-aware responses, and generate complex SQL queries with high accuracy, making it an indispensable tool for users ranging from novice to expert. The core innovation in DB-GPT lies in its private LLM technology, which is fine-tuned on domain-specific corpora to maintain user privacy and ensure data security while offering the benefits of state-of-the-art LLMs. We detail the architecture of DB-GPT, which includes a novel retrieval augmented generation (RAG) knowledge system, an adaptive learning mechanism to continuously improve performance based on user feedback and a service-oriented multi-model framework (SMMF) with powerful data-driven agents. Our extensive experiments and user studies confirm that DB-GPT represents a paradigm shift in database interactions, offering a more natural, efficient, and secure way to engage with data repositories. The paper concludes with a discussion of the implications of DB-GPT framework on the future of human-database interaction and outlines potential avenues for further enhancements and applications in the field. The project code is available at https://github.com/eosphoros-ai/DB-GPT. Experience DB-GPT for yourself by installing it with the instructions https://github.com/eosphoros-ai/DB-GPT#install and view a concise 10-minute video at https://www.youtube.com/watch?v=KYs4nTDzEhk.

ControlCity: A Multimodal Diffusion Model Based Approach for Accurate Geospatial Data Generation and Urban Morphology Analysis

Volunteer Geographic Information (VGI), with its rich variety, large volume, rapid updates, and diverse sources, has become a critical source of geospatial data. However, VGI data from platforms like OSM exhibit significant quality heterogeneity across different data types, particularly with urban building data. To address this, we propose a multi-source geographic data transformation solution, utilizing accessible and complete VGI data to assist in generating urban building footprint data. We also employ a multimodal data generation framework to improve accuracy. First, we introduce a pipeline for constructing an 'image-text-metadata-building footprint' dataset, primarily based on road network data and supplemented by other multimodal data. We then present ControlCity, a geographic data transformation method based on a multimodal diffusion model. This method first uses a pre-trained text-to-image model to align text, metadata, and building footprint data. An improved ControlNet further integrates road network and land-use imagery, producing refined building footprint data. Experiments across 22 global cities demonstrate that ControlCity successfully simulates real urban building patterns, achieving state-of-the-art performance. Specifically, our method achieves an average FID score of 50.94, reducing error by 71.01% compared to leading methods, and a MIoU score of 0.36, an improvement of 38.46%. Additionally, our model excels in tasks like urban morphology transfer, zero-shot city generation, and spatial data completeness assessment. In the zero-shot city task, our method accurately predicts and generates similar urban structures, demonstrating strong generalization. This study confirms the effectiveness of our approach in generating urban building footprint data and capturing complex city characteristics.

OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data

Mathematical reasoning continues to be a critical challenge in large language model (LLM) development with significant interest. However, most of the cutting-edge progress in mathematical reasoning with LLMs has become closed-source due to lack of access to training data. This lack of data access limits researchers from understanding the impact of different choices for synthesizing and utilizing the data. With the goal of creating a high-quality finetuning (SFT) dataset for math reasoning, we conduct careful ablation experiments on data synthesis using the recently released Llama3.1 family of models. Our experiments show that: (a) solution format matters, with excessively verbose solutions proving detrimental to SFT performance, (b) data generated by a strong teacher outperforms on-policy data generated by a weak student model, (c) SFT is robust to low-quality solutions, allowing for imprecise data filtering, and (d) question diversity is crucial for achieving data scaling gains. Based on these insights, we create the OpenMathInstruct-2 dataset, which consists of 14M question-solution pairs (approx 600K unique questions), making it nearly eight times larger than the previous largest open-source math reasoning dataset. Finetuning the Llama-3.1-8B-Base using OpenMathInstruct-2 outperforms Llama3.1-8B-Instruct on MATH by an absolute 15.9\% (51.9\% rightarrow 67.8\%). Finally, to accelerate the open-source efforts, we release the code, the finetuned models, and the OpenMathInstruct-2 dataset under a commercially permissive license.

A Survey on Knowledge Distillation of Large Language Models

This survey presents an in-depth exploration of knowledge distillation (KD) techniques within the realm of Large Language Models (LLMs), spotlighting the pivotal role of KD in transferring sophisticated capabilities from proprietary giants such as GPT-4 to accessible, open-source models like LLaMA and Mistral. Amidst the evolving AI landscape, this work elucidates the critical disparities between proprietary and open-source LLMs, demonstrating how KD serves as an essential conduit for imbuing the latter with the former's advanced functionalities and nuanced understandings. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and sustainable AI solutions, fostering a more inclusive and equitable landscape in AI advancements. An associated Github repository is available at https://github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.

DB-Explore: Automated Database Exploration and Instruction Synthesis for Text-to-SQL

Recent text-to-SQL systems powered by large language models (LLMs) have demonstrated remarkable performance in translating natural language queries into SQL. However, these systems often struggle with complex database structures and domain-specific queries, as they primarily focus on enhancing logical reasoning and SQL syntax while overlooking the critical need for comprehensive database understanding. To address this limitation, we propose DB-Explore, a novel framework that systematically aligns LLMs with database knowledge through automated exploration and instruction synthesis. DB-Explore constructs database graphs to capture complex relational schemas, leverages GPT-4 to systematically mine structural patterns and semantic knowledge, and synthesizes instructions to distill this knowledge for efficient fine-tuning of LLMs. Our framework enables comprehensive database understanding through diverse sampling strategies and automated instruction generation, bridging the gap between database structures and language models. Experiments conducted on the SPIDER and BIRD benchmarks validate the effectiveness of DB-Explore, achieving an execution accuracy of 52.1% on BIRD and 84.0% on SPIDER. Notably, our open-source implementation, based on the Qwen2.5-coder-7B model, outperforms multiple GPT-4-driven text-to-SQL systems in comparative evaluations, and achieves near state-of-the-art performance with minimal computational cost.

GeAR: Generation Augmented Retrieval

Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called Generation Augmented Retrieval (GeAR) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research.

Key-Augmented Neural Triggers for Knowledge Sharing

Repository-level code comprehension and knowledge sharing remain core challenges in software engineering. Large language models (LLMs) have shown promise by generating explanations of program structure and logic. However, these approaches still face limitations: First, relevant knowledge is distributed across multiple files within a repository, aka semantic fragmentation. Second, retrieval inefficiency and attention saturation degrade performance in RAG pipelines, where long, unaligned contexts overwhelm attention. Third, repository specific training data is scarce and often outdated. Finally, proprietary LLMs hinder industrial adoption due to privacy and deployment constraints. To address these issues, we propose Key-Augmented Neural Triggers (KANT), a novel approach that embeds knowledge anchors into both training and inference. Unlike prior methods, KANT enables internal access to repository specific knowledge, reducing fragmentation and grounding inference in localized context. Moreover, we synthesize specialized data directly from code. At inference, knowledge anchors replace verbose context, reducing token overhead and latency while supporting efficient, on premise deployment. We evaluate KANT via: a qualitative human evaluation of the synthesized dataset's intent coverage and quality across five dimensions; compare against SOTA baselines across five qualitative dimensions and inference speed; and replication across different LLMs to assess generalizability. Results show that the synthetic training data aligned with information-seeking needs. KANT achieved over 60% preference from human annotators and a LocalStack expert (preferring 79% of cases). Also, KANT reduced inference latency by up to 85% across all models. Overall, it is well-suited for scalable, low-latency, on-premise deployments, providing a strong foundation for code comprehension.

FETA: Towards Specializing Foundation Models for Expert Task Applications

Foundation Models (FMs) have demonstrated unprecedented capabilities including zero-shot learning, high fidelity data synthesis, and out of domain generalization. However, as we show in this paper, FMs still have poor out-of-the-box performance on expert tasks (e.g. retrieval of car manuals technical illustrations from language queries), data for which is either unseen or belonging to a long-tail part of the data distribution of the huge datasets used for FM pre-training. This underlines the necessity to explicitly evaluate and finetune FMs on such expert tasks, arguably ones that appear the most in practical real-world applications. In this paper, we propose a first of its kind FETA benchmark built around the task of teaching FMs to understand technical documentation, via learning to match their graphical illustrations to corresponding language descriptions. Our FETA benchmark focuses on text-to-image and image-to-text retrieval in public car manuals and sales catalogue brochures. FETA is equipped with a procedure for completely automatic annotation extraction (code would be released upon acceptance), allowing easy extension of FETA to more documentation types and application domains in the future. Our automatic annotation leads to an automated performance metric shown to be consistent with metrics computed on human-curated annotations (also released). We provide multiple baselines and analysis of popular FMs on FETA leading to several interesting findings that we believe would be very valuable to the FM community, paving the way towards real-world application of FMs for practical expert tasks currently 'overlooked' by standard benchmarks focusing on common objects.

LLM-Driven Multi-step Translation from C to Rust using Static Analysis

Translating software written in legacy languages to modern languages, such as C to Rust, has significant benefits in improving memory safety while maintaining high performance. However, manual translation is cumbersome, error-prone, and produces unidiomatic code. Large language models (LLMs) have demonstrated promise in producing idiomatic translations, but offer no correctness guarantees as they lack the ability to capture all the semantics differences between the source and target languages. To resolve this issue, we propose SACTOR, an LLM-driven C-to-Rust zero-shot translation tool using a two-step translation methodology: an "unidiomatic" step to translate C into Rust while preserving semantics, and an "idiomatic" step to refine the code to follow Rust's semantic standards. SACTOR utilizes information provided by static analysis of the source C program to address challenges such as pointer semantics and dependency resolution. To validate the correctness of the translated result from each step, we use end-to-end testing via the foreign function interface to embed our translated code segment into the original code. We evaluate the translation of 200 programs from two datasets and two case studies, comparing the performance of GPT-4o, Claude 3.5 Sonnet, Gemini 2.0 Flash, Llama 3.3 70B and DeepSeek-R1 in SACTOR. Our results demonstrate that SACTOR achieves high correctness and improved idiomaticity, with the best-performing model (DeepSeek-R1) reaching 93% and (GPT-4o, Claude 3.5, DeepSeek-R1) reaching 84% correctness (on each dataset, respectively), while producing more natural and Rust-compliant translations compared to existing methods.

Evolutionary Optimization of Model Merging Recipes

We present a novel application of evolutionary algorithms to automate the creation of powerful foundation models. While model merging has emerged as a promising approach for LLM development due to its cost-effectiveness, it currently relies on human intuition and domain knowledge, limiting its potential. Here, we propose an evolutionary approach that overcomes this limitation by automatically discovering effective combinations of diverse open-source models, harnessing their collective intelligence without requiring extensive additional training data or compute. Our approach operates in both parameter space and data flow space, allowing for optimization beyond just the weights of the individual models. This approach even facilitates cross-domain merging, generating models like a Japanese LLM with Math reasoning capabilities. Surprisingly, our Japanese Math LLM achieved state-of-the-art performance on a variety of established Japanese LLM benchmarks, even surpassing models with significantly more parameters, despite not being explicitly trained for such tasks. Furthermore, a culturally-aware Japanese VLM generated through our approach demonstrates its effectiveness in describing Japanese culture-specific content, outperforming previous Japanese VLMs. This work not only contributes new state-of-the-art models back to the open-source community, but also introduces a new paradigm for automated model composition, paving the way for exploring alternative, efficient approaches to foundation model development.

FLAMES: Improving LLM Math Reasoning via a Fine-Grained Analysis of the Data Synthesis Pipeline

Recent works improving LLM math reasoning with synthetic data have used unique setups, making comparison of data synthesis strategies impractical. This leaves many unanswered questions about the roles of different factors in the synthetic data pipeline, such as the impact of filtering low-quality problems. To address this gap, we introduce FLAMES, a Framework for LLM Assessment of Math rEasoning Data Synthesis, and perform a systematic study of 10 existing data synthesis strategies and multiple other factors impacting the performance of synthetic math reasoning data. Our FLAMES experiments provide several valuable insights about the optimal balance of difficulty and diversity of synthetic data. First, data agents designed to increase problem complexity lead to best improvements on most math metrics. Second, with a fixed data generation budget, keeping higher problem coverage is more important than keeping only problems with reliable solutions. Third, GSM8K- and MATH-based synthetic data can lead to improvements on competition-level benchmarks, showcasing easy-to-hard generalization. Leveraging insights from our FLAMES experiments, we design two novel data synthesis strategies for improving out-of-domain generalization and robustness. Further, we develop the FLAMES dataset, an effective blend of our novel and existing data synthesis strategies, outperforming public datasets on OlympiadBench (+15.7), CollegeMath (+4.5), GSMPlus (+6.5), and MATH (+3.1). Fine-tuning Qwen2.5-Math-7B on the FLAMES dataset achieves 81.4% on MATH, surpassing larger Llama3 405B, GPT-4o and Claude 3.5 Sonnet.

EvoCodeBench: An Evolving Code Generation Benchmark with Domain-Specific Evaluations

How to evaluate Large Language Models (LLMs) in code generation remains an open question. Existing benchmarks have two limitations - data leakage and lack of domain-specific evaluation. The former hurts the fairness of benchmarks, and the latter hinders practitioners from selecting superior LLMs for specific programming domains. To address these two limitations, we propose a new benchmark - EvoCodeBench, which has the following advances: (1) Evolving data. EvoCodeBench will be dynamically updated every period (e.g., 6 months) to avoid data leakage. This paper releases the first version - EvoCodeBench-2403, containing 275 samples from 25 repositories. (2) A domain taxonomy and domain labels. Based on the statistics of open-source communities, we design a programming domain taxonomy consisting of 10 popular domains. Based on the taxonomy, we annotate each sample in EvoCodeBench with a domain label. (3) Domain-specific evaluations. Besides the Pass@k, we compute the Domain-Specific Improvement (DSI) and define LLMs' comfort and strange domains. These evaluations help practitioners select superior LLMs in specific domains and discover the shortcomings of existing LLMs. We evaluate 8 popular LLMs (e.g., gpt-4, DeepSeek Coder) on EvoCodeBench and summarize some insights. EvoCodeBench reveals the actual abilities of these LLMs in real-world repositories. For example, the highest Pass@1 of gpt-4 on EvoCodeBench-2403 is only 20.74%. Besides, we evaluate LLMs in different domains and discover their comfort and strange domains. For example, gpt-4 performs best in most domains but falls behind others in the Internet domain. StarCoder 2-15B unexpectedly performs well in the Database domain and even outperforms 33B LLMs. EvoCodeBench has been released.

EinHops: Einsum Notation for Expressive Homomorphic Operations on RNS-CKKS Tensors

Fully Homomorphic Encryption (FHE) is an encryption scheme that allows for computation to be performed directly on encrypted data, effectively closing the loop on secure and outsourced computing. Data is encrypted not only during rest and transit, but also during processing. However, FHE provides a limited instruction set: SIMD addition, SIMD multiplication, and cyclic rotation of 1-D vectors. This restriction makes performing multi-dimensional tensor operations challenging. Practitioners must pack these tensors into 1-D vectors and map tensor operations onto this one-dimensional layout rather than their traditional nested structure. And while prior systems have made significant strides in automating this process, they often hide critical packing decisions behind layers of abstraction, making debugging, optimizing, and building on top of these systems difficult. In this work, we approach multi-dimensional tensor operations in FHE through Einstein summation (einsum) notation. Einsum notation explicitly encodes dimensional structure and operations in its syntax, naturally exposing how tensors should be packed and transformed. We decompose einsum expressions into a fixed set of FHE-friendly operations. We implement our design and present EinHops, a minimalist system that factors einsum expressions into a fixed sequence of FHE operations. EinHops enables developers to perform encrypted tensor operations using FHE while maintaining full visibility into the underlying packing strategy. We evaluate EinHops on a range of tensor operations from a simple transpose to complex multi-dimensional contractions. We show that the explicit nature of einsum notation allows us to build an FHE tensor system that is simple, general, and interpretable. We open-source EinHops at the following repository: https://github.com/baahl-nyu/einhops.

LLaVA Needs More Knowledge: Retrieval Augmented Natural Language Generation with Knowledge Graph for Explaining Thoracic Pathologies

Generating Natural Language Explanations (NLEs) for model predictions on medical images, particularly those depicting thoracic pathologies, remains a critical and challenging task. Existing methodologies often struggle due to general models' insufficient domain-specific medical knowledge and privacy concerns associated with retrieval-based augmentation techniques. To address these issues, we propose a novel Vision-Language framework augmented with a Knowledge Graph (KG)-based datastore, which enhances the model's understanding by incorporating additional domain-specific medical knowledge essential for generating accurate and informative NLEs. Our framework employs a KG-based retrieval mechanism that not only improves the precision of the generated explanations but also preserves data privacy by avoiding direct data retrieval. The KG datastore is designed as a plug-and-play module, allowing for seamless integration with various model architectures. We introduce and evaluate three distinct frameworks within this paradigm: KG-LLaVA, which integrates the pre-trained LLaVA model with KG-RAG; Med-XPT, a custom framework combining MedCLIP, a transformer-based projector, and GPT-2; and Bio-LLaVA, which adapts LLaVA by incorporating the Bio-ViT-L vision model. These frameworks are validated on the MIMIC-NLE dataset, where they achieve state-of-the-art results, underscoring the effectiveness of KG augmentation in generating high-quality NLEs for thoracic pathologies.

OmniSQL: Synthesizing High-quality Text-to-SQL Data at Scale

Text-to-SQL, the task of translating natural language questions into SQL queries, plays a crucial role in enabling non-experts to interact with databases. While recent advancements in large language models (LLMs) have significantly enhanced text-to-SQL performance, existing approaches face notable limitations in real-world text-to-SQL applications. Prompting-based methods often depend on closed-source LLMs, which are expensive, raise privacy concerns, and lack customization. Fine-tuning-based methods, on the other hand, suffer from poor generalizability due to the limited coverage of publicly available training data. To overcome these challenges, we propose a novel and scalable text-to-SQL data synthesis framework for automatically synthesizing large-scale, high-quality, and diverse datasets without extensive human intervention. Using this framework, we introduce SynSQL-2.5M, the first million-scale text-to-SQL dataset, containing 2.5 million samples spanning over 16,000 synthetic databases. Each sample includes a database, SQL query, natural language question, and chain-of-thought (CoT) solution. Leveraging SynSQL-2.5M, we develop OmniSQL, a powerful open-source text-to-SQL model available in three sizes: 7B, 14B, and 32B. Extensive evaluations across nine datasets demonstrate that OmniSQL achieves state-of-the-art performance, matching or surpassing leading closed-source and open-source LLMs, including GPT-4o and DeepSeek-V3, despite its smaller size. We release all code, datasets, and models to support further research.

CoIR: A Comprehensive Benchmark for Code Information Retrieval Models

Despite the substantial success of Information Retrieval (IR) in various NLP tasks, most IR systems predominantly handle queries and corpora in natural language, neglecting the domain of code retrieval. Code retrieval is critically important yet remains under-explored, with existing methods and benchmarks inadequately representing the diversity of code in various domains and tasks. Addressing this gap, we present \name (Code Information Retrieval Benchmark), a robust and comprehensive benchmark specifically designed to assess code retrieval capabilities. \name comprises ten meticulously curated code datasets, spanning eight distinctive retrieval tasks across seven diverse domains. We first discuss the construction of \name and its diverse dataset composition. Further, we evaluate nine widely used retrieval models using \name, uncovering significant difficulties in performing code retrieval tasks even with state-of-the-art systems. To facilitate easy adoption and integration within existing research workflows, \name has been developed as a user-friendly Python framework, readily installable via pip. It shares same data schema as other popular benchmarks like MTEB and BEIR, enabling seamless cross-benchmark evaluations. Through \name, we aim to invigorate research in the code retrieval domain, providing a versatile benchmarking tool that encourages further development and exploration of code retrieval systems\url{ https://github.com/CoIR-team/coir}.

LLM as Dataset Analyst: Subpopulation Structure Discovery with Large Language Model

The distribution of subpopulations is an important property hidden within a dataset. Uncovering and analyzing the subpopulation distribution within datasets provides a comprehensive understanding of the datasets, standing as a powerful tool beneficial to various downstream tasks, including Dataset Subpopulation Organization, Subpopulation Shift, and Slice Discovery. Despite its importance, there has been no work that systematically explores the subpopulation distribution of datasets to our knowledge. To address the limitation and solve all the mentioned tasks in a unified way, we introduce a novel concept of subpopulation structures to represent, analyze, and utilize subpopulation distributions within datasets. To characterize the structures in an interpretable manner, we propose the Subpopulation Structure Discovery with Large Language Models (SSD-LLM) framework, which employs world knowledge and instruction-following capabilities of Large Language Models (LLMs) to linguistically analyze informative image captions and summarize the structures. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery.

Source Code Data Augmentation for Deep Learning: A Survey

The increasingly popular adoption of deep learning models in many critical source code tasks motivates the development of data augmentation (DA) techniques to enhance training data and improve various capabilities (e.g., robustness and generalizability) of these models. Although a series of DA methods have been proposed and tailored for source code models, there lacks a comprehensive survey and examination to understand their effectiveness and implications. This paper fills this gap by conducting a comprehensive and integrative survey of data augmentation for source code, wherein we systematically compile and encapsulate existing literature to provide a comprehensive overview of the field. We start with an introduction of data augmentation in source code and then provide a discussion on major representative approaches. Next, we highlight the general strategies and techniques to optimize the DA quality. Subsequently, we underscore techniques useful in real-world source code scenarios and downstream tasks. Finally, we outline the prevailing challenges and potential opportunities for future research. In essence, we aim to demystify the corpus of existing literature on source code DA for deep learning, and foster further exploration in this sphere. Complementing this, we present a continually updated GitHub repository that hosts a list of update-to-date papers on DA for source code modeling, accessible at https://github.com/terryyz/DataAug4Code.