new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 3

LightPlanner: Unleashing the Reasoning Capabilities of Lightweight Large Language Models in Task Planning

In recent years, lightweight large language models (LLMs) have garnered significant attention in the robotics field due to their low computational resource requirements and suitability for edge deployment. However, in task planning -- particularly for complex tasks that involve dynamic semantic logic reasoning -- lightweight LLMs have underperformed. To address this limitation, we propose a novel task planner, LightPlanner, which enhances the performance of lightweight LLMs in complex task planning by fully leveraging their reasoning capabilities. Unlike conventional planners that use fixed skill templates, LightPlanner controls robot actions via parameterized function calls, dynamically generating parameter values. This approach allows for fine-grained skill control and improves task planning success rates in complex scenarios. Furthermore, we introduce hierarchical deep reasoning. Before generating each action decision step, LightPlanner thoroughly considers three levels: action execution (feedback verification), semantic parsing (goal consistency verification), and parameter generation (parameter validity verification). This ensures the correctness of subsequent action controls. Additionally, we incorporate a memory module to store historical actions, thereby reducing context length and enhancing planning efficiency for long-term tasks. We train the LightPlanner-1.5B model on our LightPlan-40k dataset, which comprises 40,000 action controls across tasks with 2 to 13 action steps. Experiments demonstrate that our model achieves the highest task success rate despite having the smallest number of parameters. In tasks involving spatial semantic reasoning, the success rate exceeds that of ReAct by 14.9 percent. Moreover, we demonstrate LightPlanner's potential to operate on edge devices.

  • 7 authors
·
Mar 11

LightReasoner: Can Small Language Models Teach Large Language Models Reasoning?

Large language models (LLMs) have demonstrated remarkable progress in reasoning, often through supervised fine-tuning (SFT). However, SFT is resource-intensive, relying on large curated datasets, rejection-sampled demonstrations, and uniform optimization across all tokens, even though only a fraction carry meaningful learning value. In this work, we explore a counterintuitive idea: can smaller language models (SLMs) teach larger language models (LLMs) by revealing high-value reasoning moments that reflect the latter's unique strength? We propose LightReasoner, a novel framework that leverages the behavioral divergence between a stronger expert model (LLM) and a weaker amateur model (SLM). LightReasoner operates in two stages: (1) a sampling stage that pinpoints critical reasoning moments and constructs supervision examples capturing the expert's advantage through expert-amateur contrast, and (2) a fine-tuning stage that aligns the expert model with these distilled examples, amplifying its reasoning strengths. Across seven mathematical benchmarks, LightReasoner improves accuracy by up to 28.1%, while reducing time consumption by 90%, sampled problems by 80%, and tuned token usage by 99%, all without relying on ground-truth labels. By turning weaker SLMs into effective teaching signals, LightReasoner offers a scalable and resource-efficient approach for advancing LLM reasoning. Code is available at: https://github.com/HKUDS/LightReasoner

Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond

This paper presents our work on the Light-R1 series, with models, data, and code all released. We first focus on training long COT models from scratch, specifically starting from models initially lacking long COT capabilities. Using a curriculum training recipe consisting of two-stage SFT and semi-on-policy DPO, we train our model Light-R1-32B from Qwen2.5-32B-Instruct, resulting in superior math performance compared to DeepSeek-R1-Distill-Qwen-32B. Despite being trained exclusively on math data, Light-R1-32B shows strong generalization across other domains. In the subsequent phase of this work, we highlight the significant benefit of the 3k dataset constructed for the second SFT stage on enhancing other models. By fine-tuning DeepSeek-R1-Distilled models using this dataset, we obtain new SOTA models in 7B and 14B, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying reinforcement learning, specifically GRPO, on long-COT models to further improve reasoning performance. We successfully train our final Light-R1-14B-DS with RL, achieving SOTA performance among 14B parameter models in math. With AIME24 & 25 scores of 74.0 and 60.2 respectively, Light-R1-14B-DS surpasses even many 32B models and DeepSeek-R1-Distill-Llama-70B. Its RL training also exhibits well expected behavior, showing simultaneous increase in response length and reward score. The Light-R1 series of work validates training long-COT models from scratch, showcases the art in SFT data and releases SOTA models from RL.

Tiny QA Benchmark++: Ultra-Lightweight, Synthetic Multilingual Dataset Generation & Smoke-Tests for Continuous LLM Evaluation

Tiny QA Benchmark++ (TQB++) presents an ultra-lightweight, multilingual smoke-test suite designed to give large-language-model (LLM) pipelines a unit-test style safety net dataset that runs in seconds with minimal cost. Born out of the tight feedback-loop demands building the Comet Opik prompt-optimization SDK, where waiting on heavyweight benchmarks breaks developer flow. TQB++ couples a 52-item English gold set (less than 20 kB) with a tiny synthetic-data generator pypi package built on provider-agnostic LiteLLM. The generator lets practitioners mint their own tiny packs in any language, domain, or difficulty, while ten ready-made packs already cover Arabic, Chinese, French, German, Japanese, Korean, Portuguese, Russian, Spanish, and Turkish. Every dataset ships with Croissant metadata and plug-and-play files for OpenAI-Evals, LangChain, and standard CI tools, so teams can drop deterministic micro-benchmarks directly into pull-request gates, prompt-engineering loops, and production dashboards without touching GPU budgets. A complete TQB++ run adds only a few seconds to pipeline latency yet reliably flags prompt-template errors, tokenizer drift, and fine-tuning side-effects long before full-scale suites like MMLU or BIG-Bench would finish configuring. The entire framework is released to accelerate continuous, resource-efficient quality assurance across the generative-AI ecosystem.

  • 1 authors
·
May 17 3

LightM-UNet: Mamba Assists in Lightweight UNet for Medical Image Segmentation

UNet and its variants have been widely used in medical image segmentation. However, these models, especially those based on Transformer architectures, pose challenges due to their large number of parameters and computational loads, making them unsuitable for mobile health applications. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as competitive alternatives to CNN and Transformer architectures. Building upon this, we employ Mamba as a lightweight substitute for CNN and Transformer within UNet, aiming at tackling challenges stemming from computational resource limitations in real medical settings. To this end, we introduce the Lightweight Mamba UNet (LightM-UNet) that integrates Mamba and UNet in a lightweight framework. Specifically, LightM-UNet leverages the Residual Vision Mamba Layer in a pure Mamba fashion to extract deep semantic features and model long-range spatial dependencies, with linear computational complexity. Extensive experiments conducted on two real-world 2D/3D datasets demonstrate that LightM-UNet surpasses existing state-of-the-art literature. Notably, when compared to the renowned nnU-Net, LightM-UNet achieves superior segmentation performance while drastically reducing parameter and computation costs by 116x and 21x, respectively. This highlights the potential of Mamba in facilitating model lightweighting. Our code implementation is publicly available at https://github.com/MrBlankness/LightM-UNet.

  • 6 authors
·
Mar 8, 2024