- Find Your Optimal Teacher: Personalized Data Synthesis via Router-Guided Multi-Teacher Distillation Training student models on synthetic data generated by strong teacher models is a promising way to distilling the capabilities of teachers. However, recent studies show that stronger models are not always optimal teachers, revealing a mismatch between teacher outputs and student learnability. To address this issue, we propose PerSyn (Personalized data Synthesis), a novel synthesis strategy that operates under a new ``Route then Generate'' paradigm to create data tailored to each student model, enabling it to learn more effectively. Specifically, PerSyn first assigns each prompt to its optimal teacher via a query-level router that jointly considers student learnability and teacher response quality. Each teacher then synthesizes data only for its assigned prompts, making the process more efficient than the conventional ``Generate then Select'' paradigm, where all teachers must generate parallel responses for the entire prompt set before constructing the final dataset. Extensive experiments across different model families and scales demonstrate that PerSyn consistently achieves superior or comparable performance to all baselines in instruct tuning and math reasoning settings. Further analysis verifies the effectiveness of PerSyn and offers extra insights to propel future research. 11 authors · Oct 12, 2025
1 Extractive Summarization via ChatGPT for Faithful Summary Generation Extractive summarization is a crucial task in natural language processing that aims to condense long documents into shorter versions by directly extracting sentences. The recent introduction of large language models has attracted significant interest in the NLP community due to its remarkable performance on a wide range of downstream tasks. This paper first presents a thorough evaluation of ChatGPT's performance on extractive summarization and compares it with traditional fine-tuning methods on various benchmark datasets. Our experimental analysis reveals that ChatGPT exhibits inferior extractive summarization performance in terms of ROUGE scores compared to existing supervised systems, while achieving higher performance based on LLM-based evaluation metrics. In addition, we explore the effectiveness of in-context learning and chain-of-thought reasoning for enhancing its performance. Furthermore, we find that applying an extract-then-generate pipeline with ChatGPT yields significant performance improvements over abstractive baselines in terms of summary faithfulness. These observations highlight potential directions for enhancing ChatGPT's capabilities in faithful summarization using two-stage approaches. 3 authors · Apr 9, 2023
14 AnyStory: Towards Unified Single and Multiple Subject Personalization in Text-to-Image Generation Recently, large-scale generative models have demonstrated outstanding text-to-image generation capabilities. However, generating high-fidelity personalized images with specific subjects still presents challenges, especially in cases involving multiple subjects. In this paper, we propose AnyStory, a unified approach for personalized subject generation. AnyStory not only achieves high-fidelity personalization for single subjects, but also for multiple subjects, without sacrificing subject fidelity. Specifically, AnyStory models the subject personalization problem in an "encode-then-route" manner. In the encoding step, AnyStory utilizes a universal and powerful image encoder, i.e., ReferenceNet, in conjunction with CLIP vision encoder to achieve high-fidelity encoding of subject features. In the routing step, AnyStory utilizes a decoupled instance-aware subject router to accurately perceive and predict the potential location of the corresponding subject in the latent space, and guide the injection of subject conditions. Detailed experimental results demonstrate the excellent performance of our method in retaining subject details, aligning text descriptions, and personalizing for multiple subjects. The project page is at https://aigcdesigngroup.github.io/AnyStory/ . 6 authors · Jan 16, 2025 2
- Generating EDU Extracts for Plan-Guided Summary Re-Ranking Two-step approaches, in which summary candidates are generated-then-reranked to return a single summary, can improve ROUGE scores over the standard single-step approach. Yet, standard decoding methods (i.e., beam search, nucleus sampling, and diverse beam search) produce candidates with redundant, and often low quality, content. In this paper, we design a novel method to generate candidates for re-ranking that addresses these issues. We ground each candidate abstract on its own unique content plan and generate distinct plan-guided abstracts using a model's top beam. More concretely, a standard language model (a BART LM) auto-regressively generates elemental discourse unit (EDU) content plans with an extractive copy mechanism. The top K beams from the content plan generator are then used to guide a separate LM, which produces a single abstractive candidate for each distinct plan. We apply an existing re-ranker (BRIO) to abstractive candidates generated from our method, as well as baseline decoding methods. We show large relevance improvements over previously published methods on widely used single document news article corpora, with ROUGE-2 F1 gains of 0.88, 2.01, and 0.38 on CNN / Dailymail, NYT, and Xsum, respectively. A human evaluation on CNN / DM validates these results. Similarly, on 1k samples from CNN / DM, we show that prompting GPT-3 to follow EDU plans outperforms sampling-based methods by 1.05 ROUGE-2 F1 points. Code to generate and realize plans is available at https://github.com/griff4692/edu-sum. 5 authors · May 28, 2023
1 A Reason-then-Describe Instruction Interpreter for Controllable Video Generation Diffusion Transformers have significantly improved video fidelity and temporal coherence, however, practical controllability remains limited. Concise, ambiguous, and compositionally complex user inputs contrast with the detailed prompts used in training, yielding an intent-output mismatch. We propose ReaDe, a universal, model-agnostic interpreter that converts raw instructions into precise, actionable specifications for downstream video generators. ReaDe follows a reason-then-describe paradigm: it first analyzes the user request to identify core requirements and resolve ambiguities, then produces detailed guidance that enables faithful, controllable generation. We train ReaDe via a two-stage optimization: (i) reasoning-augmented supervision imparts analytic parsing with stepwise traces and dense captions, and (ii) a multi-dimensional reward assigner enables stable, feedback-driven refinement for natural-style captions. Experiments across single- and multi-condition scenarios show consistent gains in instruction fidelity, caption accuracy, and downstream video quality, with strong generalization to reasoning-intensive and unseen inputs. ReaDe offers a practical route to aligning controllable video generation with accurately interpreted user intent. Project Page: https://sqwu.top/ReaDe/. 10 authors · Nov 25, 2025
4 Rewiring Experts on the Fly:Continuous Rerouting for Better Online Adaptation in Mixture-of-Expert models Mixture-of-Experts (MoE) models achieve efficient scaling through sparse expert activation, but often suffer from suboptimal routing decisions due to distribution shifts in deployment. While existing test-time adaptation methods could potentially address these issues, they primarily focus on dense models and require access to external data, limiting their practical applicability to MoE architectures. However, we find that, instead of relying on reference data, we can optimize MoE expert selection on-the-fly based only on input context. As such, we propose a data-free, online test-time framework that continuously adapts MoE routing decisions during text generation without external supervision or data. Our method cycles between two phases: During the prefill stage, and later in regular intervals, we optimize the routing decisions of the model using self-supervision based on the already generated sequence. Then, we generate text as normal, maintaining the modified router until the next adaption. We implement this through lightweight additive vectors that only update router logits in selected layers, maintaining computational efficiency while preventing over-adaptation. The experimental results show consistent performance gains on challenging reasoning tasks while maintaining robustness to context shifts. For example, our method achieves a 5.5\% improvement on HumanEval with OLMoE. Furthermore, owing to its plug-and-play property, our method naturally complements existing test-time scaling techniques, e.g., achieving 6\% average gains when incorporated with self-consistency on DeepSeek-V2-Lite. 6 authors · Oct 16, 2025 3
- Integrated Vehicle Routing and Monte Carlo Scheduling Approach for the Home Service Assignment, Routing, and Scheduling Problem We formulate and solve the H-SARA Problem, a Vehicle Routing and Appointment Scheduling Problem motivated by home services management. We assume that travel times, service durations, and customer cancellations are stochastic. We use a two-stage process that first generates teams and routes using a VRP Solver with optional extensions and then uses an MC Scheduler that determines expected arrival times by teams at customers. We further introduce two different models of cancellation and their associated impacts on routing and scheduling. Finally, we introduce the Route Fracture Metaheuristic that iteratively improves an H-SARA solution by replacing the worst-performing teams. We present insights into the problem and a series of numerical experiments that illustrate properties of the optimal routing, scheduling, and the impact of the Route Fracture Metaheuristic for both models of cancellation. 3 authors · Jun 30, 2021