- Adapt Once, Thrive with Updates: Transferable Parameter-Efficient Fine-Tuning on Evolving Base Models Parameter-efficient fine-tuning (PEFT) has become a common method for fine-tuning large language models, where a base model can serve multiple users through PEFT module switching. To enhance user experience, base models require periodic updates. However, once updated, PEFT modules fine-tuned on previous versions often suffer substantial performance degradation on newer versions. Re-tuning these numerous modules to restore performance would incur significant computational costs. Through a comprehensive analysis of the changes that occur during base model updates, we uncover an interesting phenomenon: continual training primarily affects task-specific knowledge stored in Feed-Forward Networks (FFN), while having less impact on the task-specific pattern in the Attention mechanism. Based on these findings, we introduce Trans-PEFT, a novel approach that enhances the PEFT module by focusing on the task-specific pattern while reducing its dependence on certain knowledge in the base model. Further theoretical analysis supports our approach. Extensive experiments across 7 base models and 12 datasets demonstrate that Trans-PEFT trained modules can maintain performance on updated base models without re-tuning, significantly reducing maintenance overhead in real-world applications. 6 authors · Jun 7, 2025
16 $\textit{Trans-LoRA}$: towards data-free Transferable Parameter Efficient Finetuning Low-rank adapters (LoRA) and their variants are popular parameter-efficient fine-tuning (PEFT) techniques that closely match full model fine-tune performance while requiring only a small number of additional parameters. These additional LoRA parameters are specific to the base model being adapted. When the base model needs to be deprecated and replaced with a new one, all the associated LoRA modules need to be re-trained. Such re-training requires access to the data used to train the LoRA for the original base model. This is especially problematic for commercial cloud applications where the LoRA modules and the base models are hosted by service providers who may not be allowed to host proprietary client task data. To address this challenge, we propose Trans-LoRA -- a novel method for lossless, nearly data-free transfer of LoRAs across base models. Our approach relies on synthetic data to transfer LoRA modules. Using large language models, we design a synthetic data generator to approximate the data-generating process of the observed task data subset. Training on the resulting synthetic dataset transfers LoRA modules to new models. We show the effectiveness of our approach using both LLama and Gemma model families. Our approach achieves lossless (mostly improved) LoRA transfer between models within and across different base model families, and even between different PEFT methods, on a wide variety of tasks. 7 authors · May 27, 2024
2 RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation We investigate parameter-efficient fine-tuning (PEFT) methods that can provide good accuracy under limited computational and memory budgets in the context of large language models (LLMs). We present a new PEFT method called Robust Adaptation (RoSA) inspired by robust principal component analysis (PCA) that jointly trains low-rank and highly-sparse components on top of a set of fixed pretrained weights to efficiently approximate the performance of a full-fine-tuning (FFT) solution. Across a series of challenging generative tasks such as grade-school math and SQL query generation, which require fine-tuning for good performance, we show that RoSA outperforms both LoRA and pure sparse fine-tuning, at the same parameter budget. We provide system support for RoSA to complement the training algorithm, specifically in the form of sparse GPU kernels which enable memory- and computationally-efficient training. Our code will be made available at https://github.com/IST-DASLab/RoSA. 3 authors · Jan 9, 2024
- Sparse High Rank Adapters Low Rank Adaptation (LoRA) has gained massive attention in the recent generative AI research. One of the main advantages of LoRA is its ability to be fused with pretrained models, adding no overhead during inference. However, from a mobile deployment standpoint, we can either avoid inference overhead in the fused mode but lose the ability to switch adapters rapidly, or suffer significant (up to 30% higher) inference latency while enabling rapid switching in the unfused mode. LoRA also exhibits concept-loss when multiple adapters are used concurrently. In this paper, we propose Sparse High Rank Adapters (SHiRA), a new paradigm which incurs no inference overhead, enables rapid switching, and significantly reduces concept-loss. Specifically, SHiRA can be trained by directly tuning only 1-2% of the base model weights while leaving others unchanged. This results in a highly sparse adapter which can be switched directly in the fused mode. We further provide theoretical and empirical insights on how high sparsity in SHiRA can aid multi-adapter fusion by reducing concept loss. Our extensive experiments on LVMs and LLMs demonstrate that finetuning only a small fraction of the parameters in the base model significantly outperforms LoRA while enabling both rapid switching and multi-adapter fusion. Finally, we provide a latency- and memory-efficient SHiRA implementation based on Parameter-Efficient Finetuning (PEFT) Library which trains at nearly the same speed as LoRA while consuming up to 16% lower peak GPU memory, thus making SHiRA easy to adopt for practical use cases. To demonstrate rapid switching benefits during inference, we show that loading SHiRA on a base model can be 5x-16x faster than LoRA fusion on a CPU. 12 authors · Jun 18, 2024