- Tighter Bounds on the Expressivity of Transformer Encoders Characterizing neural networks in terms of better-understood formal systems has the potential to yield new insights into the power and limitations of these networks. Doing so for transformers remains an active area of research. Bhattamishra and others have shown that transformer encoders are at least as expressive as a certain kind of counter machine, while Merrill and Sabharwal have shown that fixed-precision transformer encoders recognize only languages in uniform TC^0. We connect and strengthen these results by identifying a variant of first-order logic with counting quantifiers that is simultaneously an upper bound for fixed-precision transformer encoders and a lower bound for transformer encoders. This brings us much closer than before to an exact characterization of the languages that transformer encoders recognize. 3 authors · Jan 25, 2023
- A logical-based corpus for cross-lingual evaluation At present, different deep learning models are presenting high accuracy on popular inference datasets such as SNLI, MNLI, and SciTail. However, there are different indicators that those datasets can be exploited by using some simple linguistic patterns. This fact poses difficulties to our understanding of the actual capacity of machine learning models to solve the complex task of textual inference. We propose a new set of syntactic tasks focused on contradiction detection that require specific capacities over linguistic logical forms such as: Boolean coordination, quantifiers, definite description, and counting operators. We evaluate two kinds of deep learning models that implicitly exploit language structure: recurrent models and the Transformer network BERT. We show that although BERT is clearly more efficient to generalize over most logical forms, there is space for improvement when dealing with counting operators. Since the syntactic tasks can be implemented in different languages, we show a successful case of cross-lingual transfer learning between English and Portuguese. 3 authors · May 10, 2019