new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 4

Pretrained Transformers for Text Ranking: BERT and Beyond

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.

Autoregressive Entity Retrieval

Entities are at the center of how we represent and aggregate knowledge. For instance, Encyclopedias such as Wikipedia are structured by entities (e.g., one per Wikipedia article). The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering. Current approaches can be understood as classifiers among atomic labels, one for each entity. Their weight vectors are dense entity representations produced by encoding entity meta information such as their descriptions. This approach has several shortcomings: (i) context and entity affinity is mainly captured through a vector dot product, potentially missing fine-grained interactions; (ii) a large memory footprint is needed to store dense representations when considering large entity sets; (iii) an appropriately hard set of negative data has to be subsampled at training time. In this work, we propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion. This mitigates the aforementioned technical issues since: (i) the autoregressive formulation directly captures relations between context and entity name, effectively cross encoding both; (ii) the memory footprint is greatly reduced because the parameters of our encoder-decoder architecture scale with vocabulary size, not entity count; (iii) the softmax loss is computed without subsampling negative data. We experiment with more than 20 datasets on entity disambiguation, end-to-end entity linking and document retrieval tasks, achieving new state-of-the-art or very competitive results while using a tiny fraction of the memory footprint of competing systems. Finally, we demonstrate that new entities can be added by simply specifying their names. Code and pre-trained models at https://github.com/facebookresearch/GENRE.

A Deep Look into Neural Ranking Models for Information Retrieval

Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.

Pre-trained Language Model based Ranking in Baidu Search

As the heart of a search engine, the ranking system plays a crucial role in satisfying users' information demands. More recently, neural rankers fine-tuned from pre-trained language models (PLMs) establish state-of-the-art ranking effectiveness. However, it is nontrivial to directly apply these PLM-based rankers to the large-scale web search system due to the following challenging issues:(1) the prohibitively expensive computations of massive neural PLMs, especially for long texts in the web-document, prohibit their deployments in an online ranking system that demands extremely low latency;(2) the discrepancy between existing ranking-agnostic pre-training objectives and the ad-hoc retrieval scenarios that demand comprehensive relevance modeling is another main barrier for improving the online ranking system;(3) a real-world search engine typically involves a committee of ranking components, and thus the compatibility of the individually fine-tuned ranking model is critical for a cooperative ranking system. In this work, we contribute a series of successfully applied techniques in tackling these exposed issues when deploying the state-of-the-art Chinese pre-trained language model, i.e., ERNIE, in the online search engine system. We first articulate a novel practice to cost-efficiently summarize the web document and contextualize the resultant summary content with the query using a cheap yet powerful Pyramid-ERNIE architecture. Then we endow an innovative paradigm to finely exploit the large-scale noisy and biased post-click behavioral data for relevance-oriented pre-training. We also propose a human-anchored fine-tuning strategy tailored for the online ranking system, aiming to stabilize the ranking signals across various online components. Extensive offline and online experimental results show that the proposed techniques significantly boost the search engine's performance.

xMEN: A Modular Toolkit for Cross-Lingual Medical Entity Normalization

Objective: To improve performance of medical entity normalization across many languages, especially when fewer language resources are available compared to English. Materials and Methods: We introduce xMEN, a modular system for cross-lingual medical entity normalization, which performs well in both low- and high-resource scenarios. When synonyms in the target language are scarce for a given terminology, we leverage English aliases via cross-lingual candidate generation. For candidate ranking, we incorporate a trainable cross-encoder model if annotations for the target task are available. We also evaluate cross-encoders trained in a weakly supervised manner based on machine-translated datasets from a high resource domain. Our system is publicly available as an extensible Python toolkit. Results: xMEN improves the state-of-the-art performance across a wide range of multilingual benchmark datasets. Weakly supervised cross-encoders are effective when no training data is available for the target task. Through the compatibility of xMEN with the BigBIO framework, it can be easily used with existing and prospective datasets. Discussion: Our experiments show the importance of balancing the output of general-purpose candidate generators with subsequent trainable re-rankers, which we achieve through a rank regularization term in the loss function of the cross-encoder. However, error analysis reveals that multi-word expressions and other complex entities are still challenging. Conclusion: xMEN exhibits strong performance for medical entity normalization in multiple languages, even when no labeled data and few terminology aliases for the target language are available. Its configuration system and evaluation modules enable reproducible benchmarks. Models and code are available online at the following URL: https://github.com/hpi-dhc/xmen

ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish

Advances in natural language processing techniques, such as named entity recognition and normalization to widely used standardized terminologies like UMLS or SNOMED-CT, along with the digitalization of electronic health records, have significantly advanced clinical text analysis. This study presents ClinLinker, a novel approach employing a two-phase pipeline for medical entity linking that leverages the potential of in-domain adapted language models for biomedical text mining: initial candidate retrieval using a SapBERT-based bi-encoder and subsequent re-ranking with a cross-encoder, trained by following a contrastive-learning strategy to be tailored to medical concepts in Spanish. This methodology, focused initially on content in Spanish, substantially outperforming multilingual language models designed for the same purpose. This is true even for complex scenarios involving heterogeneous medical terminologies and being trained on a subset of the original data. Our results, evaluated using top-k accuracy at 25 and other top-k metrics, demonstrate our approach's performance on two distinct clinical entity linking Gold Standard corpora, DisTEMIST (diseases) and MedProcNER (clinical procedures), outperforming previous benchmarks by 40 points in DisTEMIST and 43 points in MedProcNER, both normalized to SNOMED-CT codes. These findings highlight our approach's ability to address language-specific nuances and set a new benchmark in entity linking, offering a potent tool for enhancing the utility of digital medical records. The resulting system is of practical value, both for large scale automatic generation of structured data derived from clinical records, as well as for exhaustive extraction and harmonization of predefined clinical variables of interest.

Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning

In this paper, we introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task. Existing document reranking methods based on large language models (LLMs) typically rely on prompting or fine-tuning LLMs to order or label candidate documents according to their relevance to a query. For Rank-R1, we use a reinforcement learning algorithm along with only a small set of relevance labels (without any reasoning supervision) to enhance the reasoning ability of LLM-based rerankers. Our hypothesis is that adding reasoning capabilities to the rerankers can improve their relevance assessement and ranking capabilities. Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries. In particular, we find that Rank-R1 achieves effectiveness on in-domain datasets at par with that of supervised fine-tuning methods, but utilizing only 18\% of the training data used by the fine-tuning methods. We also find that the model largely outperforms zero-shot and supervised fine-tuning when applied to out-of-domain datasets featuring complex queries, especially when a 14B-size model is used. Finally, we qualitatively observe that Rank-R1's reasoning process improves the explainability of the ranking results, opening new opportunities for search engine results presentation and fruition.

Retrieval Helps or Hurts? A Deeper Dive into the Efficacy of Retrieval Augmentation to Language Models

While large language models (LMs) demonstrate remarkable performance, they encounter challenges in providing accurate responses when queried for information beyond their pre-trained memorization. Although augmenting them with relevant external information can mitigate these issues, failure to consider the necessity of retrieval may adversely affect overall performance. Previous research has primarily focused on examining how entities influence retrieval models and knowledge recall in LMs, leaving other aspects relatively unexplored. In this work, our goal is to offer a more detailed, fact-centric analysis by exploring the effects of combinations of entities and relations. To facilitate this, we construct a new question answering (QA) dataset called WiTQA (Wikipedia Triple Question Answers). This dataset includes questions about entities and relations of various popularity levels, each accompanied by a supporting passage. Our extensive experiments with diverse LMs and retrievers reveal when retrieval does not consistently enhance LMs from the viewpoints of fact-centric popularity.Confirming earlier findings, we observe that larger LMs excel in recalling popular facts. However, they notably encounter difficulty with infrequent entity-relation pairs compared to retrievers. Interestingly, they can effectively retain popular relations of less common entities. We demonstrate the efficacy of our finer-grained metric and insights through an adaptive retrieval system that selectively employs retrieval and recall based on the frequencies of entities and relations in the question.

Inductive Entity Representations from Text via Link Prediction

Knowledge Graphs (KG) are of vital importance for multiple applications on the web, including information retrieval, recommender systems, and metadata annotation. Regardless of whether they are built manually by domain experts or with automatic pipelines, KGs are often incomplete. Recent work has begun to explore the use of textual descriptions available in knowledge graphs to learn vector representations of entities in order to preform link prediction. However, the extent to which these representations learned for link prediction generalize to other tasks is unclear. This is important given the cost of learning such representations. Ideally, we would prefer representations that do not need to be trained again when transferring to a different task, while retaining reasonable performance. In this work, we propose a holistic evaluation protocol for entity representations learned via a link prediction objective. We consider the inductive link prediction and entity classification tasks, which involve entities not seen during training. We also consider an information retrieval task for entity-oriented search. We evaluate an architecture based on a pretrained language model, that exhibits strong generalization to entities not observed during training, and outperforms related state-of-the-art methods (22% MRR improvement in link prediction on average). We further provide evidence that the learned representations transfer well to other tasks without fine-tuning. In the entity classification task we obtain an average improvement of 16% in accuracy compared with baselines that also employ pre-trained models. In the information retrieval task, we obtain significant improvements of up to 8.8% in NDCG@10 for natural language queries. We thus show that the learned representations are not limited KG-specific tasks, and have greater generalization properties than evaluated in previous work.

T2Ranking: A large-scale Chinese Benchmark for Passage Ranking

Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/

Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting

Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, there has been limited success so far, as researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets. We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these ranking formulations, possibly due to the nature of how LLMs are trained. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP). Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL2020, PRP based on the Flan-UL2 model with 20B parameters outperforms the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, by over 5% at NDCG@1. On TREC-DL2019, PRP is only inferior to the GPT-4 solution on the NDCG@5 and NDCG@10 metrics, while outperforming other existing solutions, such as InstructGPT which has 175B parameters, by over 10% for nearly all ranking metrics. Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity. We also discuss other benefits of PRP, such as supporting both generation and scoring LLM APIs, as well as being insensitive to input ordering.

Knowledge-Rich Self-Supervision for Biomedical Entity Linking

Entity linking faces significant challenges such as prolific variations and prevalent ambiguities, especially in high-value domains with myriad entities. Standard classification approaches suffer from the annotation bottleneck and cannot effectively handle unseen entities. Zero-shot entity linking has emerged as a promising direction for generalizing to new entities, but it still requires example gold entity mentions during training and canonical descriptions for all entities, both of which are rarely available outside of Wikipedia. In this paper, we explore Knowledge-RIch Self-Supervision (tt KRISS) for biomedical entity linking, by leveraging readily available domain knowledge. In training, it generates self-supervised mention examples on unlabeled text using a domain ontology and trains a contextual encoder using contrastive learning. For inference, it samples self-supervised mentions as prototypes for each entity and conducts linking by mapping the test mention to the most similar prototype. Our approach can easily incorporate entity descriptions and gold mention labels if available. We conducted extensive experiments on seven standard datasets spanning biomedical literature and clinical notes. Without using any labeled information, our method produces tt KRISSBERT, a universal entity linker for four million UMLS entities that attains new state of the art, outperforming prior self-supervised methods by as much as 20 absolute points in accuracy.

MOFI: Learning Image Representations from Noisy Entity Annotated Images

We present MOFI, Manifold OF Images, a new vision foundation model designed to learn image representations from noisy entity annotated images. MOFI differs from previous work in two key aspects: (i) pre-training data, and (ii) training recipe. Regarding data, we introduce a new approach to automatically assign entity labels to images from noisy image-text pairs. Our approach involves employing a named entity recognition model to extract entities from the alt-text, and then using a CLIP model to select the correct entities as labels of the paired image. It's a simple, cost-effective method that can scale to handle billions of web-mined image-text pairs. Through this method, we have created Image-to-Entities (I2E), a new dataset with 1 billion images and 2 million distinct entities, covering rich visual concepts in the wild. Building upon the I2E dataset, we study different training recipes like supervised pre-training, contrastive pre-training, and multi-task learning. For contrastive pre-training, we treat entity names as free-form text, and further enrich them with entity descriptions. Experiments show that supervised pre-training with large-scale fine-grained entity labels is highly effective for image retrieval tasks, and multi-task training further improves the performance. The final MOFI model achieves 86.66% mAP on the challenging GPR1200 dataset, surpassing the previous state-of-the-art performance of 72.19% from OpenAI's CLIP model. Further experiments on zero-shot and linear probe image classification also show that MOFI outperforms a CLIP model trained on the original image-text data, demonstrating the effectiveness of the I2E dataset in learning strong image representations. We release our code and model weights at https://github.com/apple/ml-mofi.

Efficient and Interpretable Neural Models for Entity Tracking

What would it take for a natural language model to understand a novel, such as The Lord of the Rings? Among other things, such a model must be able to: (a) identify and record new characters (entities) and their attributes as they are introduced in the text, and (b) identify subsequent references to the characters previously introduced and update their attributes. This problem of entity tracking is essential for language understanding, and thus, useful for a wide array of downstream applications in NLP such as question-answering, summarization. In this thesis, we focus on two key problems in relation to facilitating the use of entity tracking models: (i) scaling entity tracking models to long documents, such as a novel, and (ii) integrating entity tracking into language models. Applying language technologies to long documents has garnered interest recently, but computational constraints are a significant bottleneck in scaling up current methods. In this thesis, we argue that computationally efficient entity tracking models can be developed by representing entities with rich, fixed-dimensional vector representations derived from pretrained language models, and by exploiting the ephemeral nature of entities. We also argue for the integration of entity tracking into language models as it will allow for: (i) wider application given the current ubiquitous use of pretrained language models in NLP applications, and (ii) easier adoption since it is much easier to swap in a new pretrained language model than to integrate a separate standalone entity tracking model.

NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval

Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained -- and intersectional -- entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals.

FIRST: Faster Improved Listwise Reranking with Single Token Decoding

Large Language Models (LLMs) have significantly advanced the field of information retrieval, particularly for reranking. Listwise LLM rerankers have showcased superior performance and generalizability compared to existing supervised approaches. However, conventional listwise LLM reranking methods lack efficiency as they provide ranking output in the form of a generated ordered sequence of candidate passage identifiers. Further, they are trained with the typical language modeling objective, which treats all ranking errors uniformly--potentially at the cost of misranking highly relevant passages. Addressing these limitations, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates. Further, we incorporate a learning-to-rank loss during training, prioritizing ranking accuracy for the more relevant passages. Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark. Finally, to illustrate the practical effectiveness of listwise LLM rerankers, we investigate their application in providing relevance feedback for retrievers during inference. Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.

Neural Rankers for Effective Screening Prioritisation in Medical Systematic Review Literature Search

Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.

Judging the Judges: A Collection of LLM-Generated Relevance Judgements

Using Large Language Models (LLMs) for relevance assessments offers promising opportunities to improve Information Retrieval (IR), Natural Language Processing (NLP), and related fields. Indeed, LLMs hold the promise of allowing IR experimenters to build evaluation collections with a fraction of the manual human labor currently required. This could help with fresh topics on which there is still limited knowledge and could mitigate the challenges of evaluating ranking systems in low-resource scenarios, where it is challenging to find human annotators. Given the fast-paced recent developments in the domain, many questions concerning LLMs as assessors are yet to be answered. Among the aspects that require further investigation, we can list the impact of various components in a relevance judgment generation pipeline, such as the prompt used or the LLM chosen. This paper benchmarks and reports on the results of a large-scale automatic relevance judgment evaluation, the LLMJudge challenge at SIGIR 2024, where different relevance assessment approaches were proposed. In detail, we release and benchmark 42 LLM-generated labels of the TREC 2023 Deep Learning track relevance judgments produced by eight international teams who participated in the challenge. Given their diverse nature, these automatically generated relevance judgments can help the community not only investigate systematic biases caused by LLMs but also explore the effectiveness of ensemble models, analyze the trade-offs between different models and human assessors, and advance methodologies for improving automated evaluation techniques. The released resource is available at the following link: https://llm4eval.github.io/LLMJudge-benchmark/

Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard

BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.

Policy-Gradient Training of Language Models for Ranking

Text retrieval plays a crucial role in incorporating factual knowledge for decision making into language processing pipelines, ranging from chat-based web search to question answering systems. Current state-of-the-art text retrieval models leverage pre-trained large language models (LLMs) to achieve competitive performance, but training LLM-based retrievers via typical contrastive losses requires intricate heuristics, including selecting hard negatives and using additional supervision as learning signals. This reliance on heuristics stems from the fact that the contrastive loss itself is heuristic and does not directly optimize the downstream metrics of decision quality at the end of the processing pipeline. To address this issue, we introduce Neural PG-RANK, a novel training algorithm that learns to rank by instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides a principled method for end-to-end training of retrieval models as part of larger decision systems via policy gradient, with little reliance on complex heuristics, and it effectively unifies the training objective with downstream decision-making quality. We conduct extensive experiments on various text retrieval benchmarks. The results demonstrate that when the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream question answering tasks.

Large Language Models Struggle to Learn Long-Tail Knowledge

The internet contains a wealth of knowledge -- from the birthdays of historical figures to tutorials on how to code -- all of which may be learned by language models. However, there is a huge variability in the number of times a given piece of information appears on the web. In this paper, we study the relationship between the knowledge memorized by large language models and the information in their pre-training datasets. In particular, we show that a language model's ability to answer a fact-based question relates to how many documents associated with that question were seen during pre-training. We identify these relevant documents by entity linking pre-training datasets and counting documents that contain the same entities as a given question-answer pair. Our results demonstrate strong correlational and causal relationships between accuracy and relevant document count for numerous question answering datasets (e.g., TriviaQA), pre-training corpora (e.g., ROOTS), and model sizes (e.g., 176B parameters). Moreover, we find that while larger models are better at learning long-tail knowledge, we estimate that today's models must be scaled by many orders of magnitude to reach competitive QA performance on questions with little support in the pre-training data. Finally, we show that retrieval-augmentation can reduce the dependence on relevant document count, presenting a promising approach for capturing the long-tail.

SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank

Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a refreshed perspective to this problem: instead of searching for such a 'one-size-fit-all' solution that may never exist, we propose to develop generic methods to 'enhance' existing ATE methods. We introduce SemRe-Rank, the first method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised PageRank process to compute 'semantic importance' scores for candidate terms from a graph of semantically related words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points when measured by the Precision in the top ranked K candidate terms (the average for a set of K's), or up to 28 percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short). Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in Precision at top K, or up to 17 points in F1.

Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking

An emerging recipe for achieving state-of-the-art effectiveness in neural document re-ranking involves utilizing large pre-trained language models - e.g., BERT - to evaluate all individual passages in the document and then aggregating the outputs by pooling or additional Transformer layers. A major drawback of this approach is high query latency due to the cost of evaluating every passage in the document with BERT. To make matters worse, this high inference cost and latency varies based on the length of the document, with longer documents requiring more time and computation. To address this challenge, we adopt an intra-document cascading strategy, which prunes passages of a candidate document using a less expensive model, called ESM, before running a scoring model that is more expensive and effective, called ETM. We found it best to train ESM (short for Efficient Student Model) via knowledge distillation from the ETM (short for Effective Teacher Model) e.g., BERT. This pruning allows us to only run the ETM model on a smaller set of passages whose size does not vary by document length. Our experiments on the MS MARCO and TREC Deep Learning Track benchmarks suggest that the proposed Intra-Document Cascaded Ranking Model (IDCM) leads to over 400% lower query latency by providing essentially the same effectiveness as the state-of-the-art BERT-based document ranking models.

DWIE: an entity-centric dataset for multi-task document-level information extraction

This paper presents DWIE, the 'Deutsche Welle corpus for Information Extraction', a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE's potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE.

DynamicRetriever: A Pre-training Model-based IR System with Neither Sparse nor Dense Index

Web search provides a promising way for people to obtain information and has been extensively studied. With the surgence of deep learning and large-scale pre-training techniques, various neural information retrieval models are proposed and they have demonstrated the power for improving search (especially, the ranking) quality. All these existing search methods follow a common paradigm, i.e. index-retrieve-rerank, where they first build an index of all documents based on document terms (i.e., sparse inverted index) or representation vectors (i.e., dense vector index), then retrieve and rerank retrieved documents based on similarity between the query and documents via ranking models. In this paper, we explore a new paradigm of information retrieval with neither sparse nor dense index but only a model. Specifically, we propose a pre-training model-based IR system called DynamicRetriever. As for this system, the training stage embeds the token-level and document-level information (especially, document identifiers) of the corpus into the model parameters, then the inference stage directly generates document identifiers for a given query. Compared with existing search methods, the model-based IR system has two advantages: i) it parameterizes the traditional static index with a pre-training model, which converts the document semantic mapping into a dynamic and updatable process; ii) with separate document identifiers, it captures both the term-level and document-level information for each document. Extensive experiments conducted on the public search benchmark MS MARCO verify the effectiveness and potential of our proposed new paradigm for information retrieval.

Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation

Retrieval and ranking models are the backbone of many applications such as web search, open domain QA, or text-based recommender systems. The latency of neural ranking models at query time is largely dependent on the architecture and deliberate choices by their designers to trade-off effectiveness for higher efficiency. This focus on low query latency of a rising number of efficient ranking architectures make them feasible for production deployment. In machine learning an increasingly common approach to close the effectiveness gap of more efficient models is to apply knowledge distillation from a large teacher model to a smaller student model. We find that different ranking architectures tend to produce output scores in different magnitudes. Based on this finding, we propose a cross-architecture training procedure with a margin focused loss (Margin-MSE), that adapts knowledge distillation to the varying score output distributions of different BERT and non-BERT passage ranking architectures. We apply the teachable information as additional fine-grained labels to existing training triples of the MSMARCO-Passage collection. We evaluate our procedure of distilling knowledge from state-of-the-art concatenated BERT models to four different efficient architectures (TK, ColBERT, PreTT, and a BERT CLS dot product model). We show that across our evaluated architectures our Margin-MSE knowledge distillation significantly improves re-ranking effectiveness without compromising their efficiency. Additionally, we show our general distillation method to improve nearest neighbor based index retrieval with the BERT dot product model, offering competitive results with specialized and much more costly training methods. To benefit the community, we publish the teacher-score training files in a ready-to-use package.

Generating EDU Extracts for Plan-Guided Summary Re-Ranking

Two-step approaches, in which summary candidates are generated-then-reranked to return a single summary, can improve ROUGE scores over the standard single-step approach. Yet, standard decoding methods (i.e., beam search, nucleus sampling, and diverse beam search) produce candidates with redundant, and often low quality, content. In this paper, we design a novel method to generate candidates for re-ranking that addresses these issues. We ground each candidate abstract on its own unique content plan and generate distinct plan-guided abstracts using a model's top beam. More concretely, a standard language model (a BART LM) auto-regressively generates elemental discourse unit (EDU) content plans with an extractive copy mechanism. The top K beams from the content plan generator are then used to guide a separate LM, which produces a single abstractive candidate for each distinct plan. We apply an existing re-ranker (BRIO) to abstractive candidates generated from our method, as well as baseline decoding methods. We show large relevance improvements over previously published methods on widely used single document news article corpora, with ROUGE-2 F1 gains of 0.88, 2.01, and 0.38 on CNN / Dailymail, NYT, and Xsum, respectively. A human evaluation on CNN / DM validates these results. Similarly, on 1k samples from CNN / DM, we show that prompting GPT-3 to follow EDU plans outperforms sampling-based methods by 1.05 ROUGE-2 F1 points. Code to generate and realize plans is available at https://github.com/griff4692/edu-sum.

Rankify: A Comprehensive Python Toolkit for Retrieval, Re-Ranking, and Retrieval-Augmented Generation

Retrieval, re-ranking, and retrieval-augmented generation (RAG) are critical components of modern applications in information retrieval, question answering, or knowledge-based text generation. However, existing solutions are often fragmented, lacking a unified framework that easily integrates these essential processes. The absence of a standardized implementation, coupled with the complexity of retrieval and re-ranking workflows, makes it challenging for researchers to compare and evaluate different approaches in a consistent environment. While existing toolkits such as Rerankers and RankLLM provide general-purpose reranking pipelines, they often lack the flexibility required for fine-grained experimentation and benchmarking. In response to these challenges, we introduce Rankify, a powerful and modular open-source toolkit designed to unify retrieval, re-ranking, and RAG within a cohesive framework. Rankify supports a wide range of retrieval techniques, including dense and sparse retrievers, while incorporating state-of-the-art re-ranking models to enhance retrieval quality. Additionally, Rankify includes a collection of pre-retrieved datasets to facilitate benchmarking, available at Huggingface (https://huggingface.co/datasets/abdoelsayed/reranking-datasets-light). To encourage adoption and ease of integration, we provide comprehensive documentation (http://rankify.readthedocs.io/), an open-source implementation on GitHub (https://github.com/DataScienceUIBK/rankify), and a PyPI package for easy installation (https://pypi.org/project/rankify/). As a unified and lightweight framework, Rankify allows researchers and practitioners to advance retrieval and re-ranking methodologies while ensuring consistency, scalability, and ease of use.

Computer Science Named Entity Recognition in the Open Research Knowledge Graph

Domain-specific named entity recognition (NER) on Computer Science (CS) scholarly articles is an information extraction task that is arguably more challenging for the various annotation aims that can beset the task and has been less studied than NER in the general domain. Given that significant progress has been made on NER, we believe that scholarly domain-specific NER will receive increasing attention in the years to come. Currently, progress on CS NER -- the focus of this work -- is hampered in part by its recency and the lack of a standardized annotation aim for scientific entities/terms. This work proposes a standardized task by defining a set of seven contribution-centric scholarly entities for CS NER viz., research problem, solution, resource, language, tool, method, and dataset. Following which, its main contributions are: combines existing CS NER resources that maintain their annotation focus on the set or subset of contribution-centric scholarly entities we consider; further, noting the need for big data to train neural NER models, this work additionally supplies thousands of contribution-centric entity annotations from article titles and abstracts, thus releasing a cumulative large novel resource for CS NER; and, finally, trains a sequence labeling CS NER model inspired after state-of-the-art neural architectures from the general domain NER task. Throughout the work, several practical considerations are made which can be useful to information technology designers of the digital libraries.

Attention in Large Language Models Yields Efficient Zero-Shot Re-Rankers

Information retrieval (IR) systems have played a vital role in modern digital life and have cemented their continued usefulness in this new era of generative AI via retrieval-augmented generation. With strong language processing capabilities and remarkable versatility, large language models (LLMs) have become popular choices for zero-shot re-ranking in IR systems. So far, LLM-based re-ranking methods rely on strong generative capabilities, which restricts their use to either specialized or powerful proprietary models. Given these restrictions, we ask: is autoregressive generation necessary and optimal for LLMs to perform re-ranking? We hypothesize that there are abundant signals relevant to re-ranking within LLMs that might not be used to their full potential via generation. To more directly leverage such signals, we propose in-context re-ranking (ICR), a novel method that leverages the change in attention pattern caused by the search query for accurate and efficient re-ranking. To mitigate the intrinsic biases in LLMs, we propose a calibration method using a content-free query. Due to the absence of generation, ICR only requires two (O(1)) forward passes to re-rank N documents, making it substantially more efficient than generative re-ranking methods that require at least O(N) forward passes. Our novel design also enables ICR to be applied to any LLM without specialized training while guaranteeing a well-formed ranking. Extensive experiments with two popular open-weight LLMs on standard single-hop and multi-hop information retrieval benchmarks show that ICR outperforms RankGPT while cutting the latency by more than 60% in practice. Through detailed analyses, we show that ICR's performance is specially strong on tasks that require more complex re-ranking signals. Our findings call for further exploration on novel ways of utilizing open-weight LLMs beyond text generation.

Training Curricula for Open Domain Answer Re-Ranking

In precision-oriented tasks like answer ranking, it is more important to rank many relevant answers highly than to retrieve all relevant answers. It follows that a good ranking strategy would be to learn how to identify the easiest correct answers first (i.e., assign a high ranking score to answers that have characteristics that usually indicate relevance, and a low ranking score to those with characteristics that do not), before incorporating more complex logic to handle difficult cases (e.g., semantic matching or reasoning). In this work, we apply this idea to the training of neural answer rankers using curriculum learning. We propose several heuristics to estimate the difficulty of a given training sample. We show that the proposed heuristics can be used to build a training curriculum that down-weights difficult samples early in the training process. As the training process progresses, our approach gradually shifts to weighting all samples equally, regardless of difficulty. We present a comprehensive evaluation of our proposed idea on three answer ranking datasets. Results show that our approach leads to superior performance of two leading neural ranking architectures, namely BERT and ConvKNRM, using both pointwise and pairwise losses. When applied to a BERT-based ranker, our method yields up to a 4% improvement in MRR and a 9% improvement in P@1 (compared to the model trained without a curriculum). This results in models that can achieve comparable performance to more expensive state-of-the-art techniques.

Reverse Region-to-Entity Annotation for Pixel-Level Visual Entity Linking

Visual Entity Linking (VEL) is a crucial task for achieving fine-grained visual understanding, matching objects within images (visual mentions) to entities in a knowledge base. Previous VEL tasks rely on textual inputs, but writing queries for complex scenes can be challenging. Visual inputs like clicks or bounding boxes offer a more convenient alternative. Therefore, we propose a new task, Pixel-Level Visual Entity Linking (PL-VEL), which uses pixel masks from visual inputs to refer to objects, supplementing reference methods for VEL. To facilitate research on this task, we have constructed the MaskOVEN-Wiki dataset through an entirely automatic reverse region-entity annotation framework. This dataset contains over 5 million annotations aligning pixel-level regions with entity-level labels, which will advance visual understanding towards fine-grained. Moreover, as pixel masks correspond to semantic regions in an image, we enhance previous patch-interacted attention with region-interacted attention by a visual semantic tokenization approach. Manual evaluation results indicate that the reverse annotation framework achieved a 94.8% annotation success rate. Experimental results show that models trained on this dataset improved accuracy by 18 points compared to zero-shot models. Additionally, the semantic tokenization method achieved a 5-point accuracy improvement over the trained baseline.

On the Robustness of Document-Level Relation Extraction Models to Entity Name Variations

Driven by the demand for cross-sentence and large-scale relation extraction, document-level relation extraction (DocRE) has attracted increasing research interest. Despite the continuous improvement in performance, we find that existing DocRE models which initially perform well may make more mistakes when merely changing the entity names in the document, hindering the generalization to novel entity names. To this end, we systematically investigate the robustness of DocRE models to entity name variations in this work. We first propose a principled pipeline to generate entity-renamed documents by replacing the original entity names with names from Wikidata. By applying the pipeline to DocRED and Re-DocRED datasets, we construct two novel benchmarks named Env-DocRED and Env-Re-DocRED for robustness evaluation. Experimental results show that both three representative DocRE models and two in-context learned large language models consistently lack sufficient robustness to entity name variations, particularly on cross-sentence relation instances and documents with more entities. Finally, we propose an entity variation robust training method which not only improves the robustness of DocRE models but also enhances their understanding and reasoning capabilities. We further verify that the basic idea of this method can be effectively transferred to in-context learning for DocRE as well.

BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval

Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io.

DeepResearchGym: A Free, Transparent, and Reproducible Evaluation Sandbox for Deep Research

Deep research systems represent an emerging class of agentic information retrieval methods that generate comprehensive and well-supported reports to complex queries. However, most existing frameworks rely on dynamic commercial search APIs, which pose reproducibility and transparency challenges in addition to their cost. To address these limitations, we introduce DeepResearchGym, an open-source sandbox that combines a reproducible search API with a rigorous evaluation protocol for benchmarking deep research systems. The API indexes large-scale public web corpora, namely ClueWeb22 and FineWeb, using a state-of-the-art dense retriever and approximate nearest neighbor search via DiskANN. It achieves lower latency than popular commercial APIs while ensuring stable document rankings across runs, and is freely available for research use. To evaluate deep research systems' outputs, we extend the Researchy Questions benchmark with automatic metrics through LLM-as-a-judge assessments to measure alignment with users' information needs, retrieval faithfulness, and report quality. Experimental results show that systems integrated with DeepResearchGym achieve performance comparable to those using commercial APIs, with performance rankings remaining consistent across evaluation metrics. A human evaluation study further confirms that our automatic protocol aligns with human preferences, validating the framework's ability to help support controlled assessment of deep research systems. Our code and API documentation are available at https://www.deepresearchgym.ai.

Calibrated Seq2seq Models for Efficient and Generalizable Ultra-fine Entity Typing

Ultra-fine entity typing plays a crucial role in information extraction by predicting fine-grained semantic types for entity mentions in text. However, this task poses significant challenges due to the massive number of entity types in the output space. The current state-of-the-art approaches, based on standard multi-label classifiers or cross-encoder models, suffer from poor generalization performance or inefficient inference. In this paper, we present CASENT, a seq2seq model designed for ultra-fine entity typing that predicts ultra-fine types with calibrated confidence scores. Our model takes an entity mention as input and employs constrained beam search to generate multiple types autoregressively. The raw sequence probabilities associated with the predicted types are then transformed into confidence scores using a novel calibration method. We conduct extensive experiments on the UFET dataset which contains over 10k types. Our method outperforms the previous state-of-the-art in terms of F1 score and calibration error, while achieving an inference speedup of over 50 times. Additionally, we demonstrate the generalization capabilities of our model by evaluating it in zero-shot and few-shot settings on five specialized domain entity typing datasets that are unseen during training. Remarkably, our model outperforms large language models with 10 times more parameters in the zero-shot setting, and when fine-tuned on 50 examples, it significantly outperforms ChatGPT on all datasets. Our code, models and demo are available at https://github.com/yanlinf/CASENT.

A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese

Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 10 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved F_1 scores of 88.6, 95.0, and 55.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively.

ProRank: Prompt Warmup via Reinforcement Learning for Small Language Models Reranking

Reranking is fundamental to information retrieval and retrieval-augmented generation, with recent Large Language Models (LLMs) significantly advancing reranking quality. While recent advances with LLMs have significantly improved document reranking quality, current approaches primarily rely on large-scale LLMs (>7B parameters) through zero-shot prompting, presenting high computational costs. Small Language Models (SLMs) offer a promising alternative because of their efficiency, but our preliminary quantitative analysis reveals they struggle with understanding task prompts without fine-tuning. This limits their effectiveness for document reranking tasks. To address this issue, we introduce a novel two-stage training approach, ProRank, for SLM-based document reranking. First, we propose a prompt warmup stage using reinforcement learning GRPO to steer SLMs to understand task prompts and generate more accurate coarse-grained binary relevance scores for document reranking. Then, we continuously fine-tune the SLMs with a fine-grained score learning stage without introducing additional layers to further improve the reranking quality. Comprehensive experimental results demonstrate that the proposed ProRank consistently outperforms both the most advanced open-source and proprietary reranking models. Notably, our lightweight ProRank-0.5B model even surpasses the powerful 32B LLM reranking model on the BEIR benchmark, establishing that properly trained SLMs can achieve superior document reranking performance while maintaining computational efficiency.

Embedding Models for Supervised Automatic Extraction and Classification of Named Entities in Scientific Acknowledgements

Acknowledgments in scientific papers may give an insight into aspects of the scientific community, such as reward systems, collaboration patterns, and hidden research trends. The aim of the paper is to evaluate the performance of different embedding models for the task of automatic extraction and classification of acknowledged entities from the acknowledgment text in scientific papers. We trained and implemented a named entity recognition (NER) task using the Flair NLP framework. The training was conducted using three default Flair NER models with four differently-sized corpora and different versions of the Flair NLP framework. The Flair Embeddings model trained on the medium corpus with the latest FLAIR version showed the best accuracy of 0.79. Expanding the size of a training corpus from very small to medium size massively increased the accuracy of all training algorithms, but further expansion of the training corpus did not bring further improvement. Moreover, the performance of the model slightly deteriorated. Our model is able to recognize six entity types: funding agency, grant number, individuals, university, corporation, and miscellaneous. The model works more precisely for some entity types than for others; thus, individuals and grant numbers showed a very good F1-Score over 0.9. Most of the previous works on acknowledgment analysis were limited by the manual evaluation of data and therefore by the amount of processed data. This model can be applied for the comprehensive analysis of acknowledgment texts and may potentially make a great contribution to the field of automated acknowledgment analysis.

Sliding Windows Are Not the End: Exploring Full Ranking with Long-Context Large Language Models

Large Language Models (LLMs) have shown exciting performance in listwise passage ranking. Due to the limited input length, existing methods often adopt the sliding window strategy. Such a strategy, though effective, is inefficient as it involves repetitive and serialized processing, which usually re-evaluates relevant passages multiple times. As a result, it incurs redundant API costs, which are proportional to the number of inference tokens. The development of long-context LLMs enables the full ranking of all passages within a single inference, avoiding redundant API costs. In this paper, we conduct a comprehensive study of long-context LLMs for ranking tasks in terms of efficiency and effectiveness. Surprisingly, our experiments reveal that full ranking with long-context LLMs can deliver superior performance in the supervised fine-tuning setting with a huge efficiency improvement. Furthermore, we identify two limitations of fine-tuning the full ranking model based on existing methods: (1) sliding window strategy fails to produce a full ranking list as a training label, and (2) the language modeling loss cannot emphasize top-ranked passage IDs in the label. To alleviate these issues, we propose a new complete listwise label construction approach and a novel importance-aware learning objective for full ranking. Experiments show the superior performance of our method over baselines. Our codes are available at https://github.com/8421BCD/fullrank.

High-Throughput Vector Similarity Search in Knowledge Graphs

There is an increasing adoption of machine learning for encoding data into vectors to serve online recommendation and search use cases. As a result, recent data management systems propose augmenting query processing with online vector similarity search. In this work, we explore vector similarity search in the context of Knowledge Graphs (KGs). Motivated by the tasks of finding related KG queries and entities for past KG query workloads, we focus on hybrid vector similarity search (hybrid queries for short) where part of the query corresponds to vector similarity search and part of the query corresponds to predicates over relational attributes associated with the underlying data vectors. For example, given past KG queries for a song entity, we want to construct new queries for new song entities whose vector representations are close to the vector representation of the entity in the past KG query. But entities in a KG also have non-vector attributes such as a song associated with an artist, a genre, and a release date. Therefore, suggested entities must also satisfy query predicates over non-vector attributes beyond a vector-based similarity predicate. While these tasks are central to KGs, our contributions are generally applicable to hybrid queries. In contrast to prior works that optimize online queries, we focus on enabling efficient batch processing of past hybrid query workloads. We present our system, HQI, for high-throughput batch processing of hybrid queries. We introduce a workload-aware vector data partitioning scheme to tailor the vector index layout to the given workload and describe a multi-query optimization technique to reduce the overhead of vector similarity computations. We evaluate our methods on industrial workloads and demonstrate that HQI yields a 31x improvement in throughput for finding related KG queries compared to existing hybrid query processing approaches.

Re-Imagen: Retrieval-Augmented Text-to-Image Generator

Research on text-to-image generation has witnessed significant progress in generating diverse and photo-realistic images, driven by diffusion and auto-regressive models trained on large-scale image-text data. Though state-of-the-art models can generate high-quality images of common entities, they often have difficulty generating images of uncommon entities, such as `Chortai (dog)' or `Picarones (food)'. To tackle this issue, we present the Retrieval-Augmented Text-to-Image Generator (Re-Imagen), a generative model that uses retrieved information to produce high-fidelity and faithful images, even for rare or unseen entities. Given a text prompt, Re-Imagen accesses an external multi-modal knowledge base to retrieve relevant (image, text) pairs and uses them as references to generate the image. With this retrieval step, Re-Imagen is augmented with the knowledge of high-level semantics and low-level visual details of the mentioned entities, and thus improves its accuracy in generating the entities' visual appearances. We train Re-Imagen on a constructed dataset containing (image, text, retrieval) triples to teach the model to ground on both text prompt and retrieval. Furthermore, we develop a new sampling strategy to interleave the classifier-free guidance for text and retrieval conditions to balance the text and retrieval alignment. Re-Imagen achieves significant gain on FID score over COCO and WikiImage. To further evaluate the capabilities of the model, we introduce EntityDrawBench, a new benchmark that evaluates image generation for diverse entities, from frequent to rare, across multiple object categories including dogs, foods, landmarks, birds, and characters. Human evaluation on EntityDrawBench shows that Re-Imagen can significantly improve the fidelity of generated images, especially on less frequent entities.