new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 3

Comparison of Unsupervised Metrics for Evaluating Judicial Decision Extraction

The rapid advancement of artificial intelligence in legal natural language processing demands scalable methods for evaluating text extraction from judicial decisions. This study evaluates 16 unsupervised metrics, including novel formulations, to assess the quality of extracting seven semantic blocks from 1,000 anonymized Russian judicial decisions, validated against 7,168 expert reviews on a 1--5 Likert scale. These metrics, spanning document-based, semantic, structural, pseudo-ground truth, and legal-specific categories, operate without pre-annotated ground truth. Bootstrapped correlations, Lin's concordance correlation coefficient (CCC), and mean absolute error (MAE) reveal that Term Frequency Coherence (Pearson r = 0.540, Lin CCC = 0.512, MAE = 0.127) and Coverage Ratio/Block Completeness (Pearson r = 0.513, Lin CCC = 0.443, MAE = 0.139) best align with expert ratings, while Legal Term Density (Pearson r = -0.479, Lin CCC = -0.079, MAE = 0.394) show strong negative correlations. The LLM Evaluation Score (mean = 0.849, Pearson r = 0.382, Lin CCC = 0.325, MAE = 0.197) showed moderate alignment, but its performance, using gpt-4.1-mini via g4f, suggests limited specialization for legal textse. These findings highlight that unsupervised metrics, including LLM-based approaches, enable scalable screening but, with moderate correlations and low CCC values, cannot fully replace human judgment in high-stakes legal contexts. This work advances legal NLP by providing annotation-free evaluation tools, with implications for judicial analytics and ethical AI deployment.

  • 5 authors
·
Oct 2

LegalVis: Exploring and Inferring Precedent Citations in Legal Documents

To reduce the number of pending cases and conflicting rulings in the Brazilian Judiciary, the National Congress amended the Constitution, allowing the Brazilian Supreme Court (STF) to create binding precedents (BPs), i.e., a set of understandings that both Executive and lower Judiciary branches must follow. The STF's justices frequently cite the 58 existing BPs in their decisions, and it is of primary relevance that judicial experts could identify and analyze such citations. To assist in this problem, we propose LegalVis, a web-based visual analytics system designed to support the analysis of legal documents that cite or could potentially cite a BP. We model the problem of identifying potential citations (i.e., non-explicit) as a classification problem. However, a simple score is not enough to explain the results; that is why we use an interpretability machine learning method to explain the reason behind each identified citation. For a compelling visual exploration of documents and BPs, LegalVis comprises three interactive visual components: the first presents an overview of the data showing temporal patterns, the second allows filtering and grouping relevant documents by topic, and the last one shows a document's text aiming to interpret the model's output by pointing out which paragraphs are likely to mention the BP, even if not explicitly specified. We evaluated our identification model and obtained an accuracy of 96%; we also made a quantitative and qualitative analysis of the results. The usefulness and effectiveness of LegalVis were evaluated through two usage scenarios and feedback from six domain experts.

  • 4 authors
·
Mar 3, 2022

CaseSumm: A Large-Scale Dataset for Long-Context Summarization from U.S. Supreme Court Opinions

This paper introduces CaseSumm, a novel dataset for long-context summarization in the legal domain that addresses the need for longer and more complex datasets for summarization evaluation. We collect 25.6K U.S. Supreme Court (SCOTUS) opinions and their official summaries, known as "syllabuses." Our dataset is the largest open legal case summarization dataset, and is the first to include summaries of SCOTUS decisions dating back to 1815. We also present a comprehensive evaluation of LLM-generated summaries using both automatic metrics and expert human evaluation, revealing discrepancies between these assessment methods. Our evaluation shows Mistral 7b, a smaller open-source model, outperforms larger models on most automatic metrics and successfully generates syllabus-like summaries. In contrast, human expert annotators indicate that Mistral summaries contain hallucinations. The annotators consistently rank GPT-4 summaries as clearer and exhibiting greater sensitivity and specificity. Further, we find that LLM-based evaluations are not more correlated with human evaluations than traditional automatic metrics. Furthermore, our analysis identifies specific hallucinations in generated summaries, including precedent citation errors and misrepresentations of case facts. These findings demonstrate the limitations of current automatic evaluation methods for legal summarization and highlight the critical role of human evaluation in assessing summary quality, particularly in complex, high-stakes domains. CaseSumm is available at https://huggingface.co/datasets/ChicagoHAI/CaseSumm

  • 5 authors
·
Dec 30, 2024

Low-Resource Court Judgment Summarization for Common Law Systems

Common law courts need to refer to similar precedents' judgments to inform their current decisions. Generating high-quality summaries of court judgment documents can facilitate legal practitioners to efficiently review previous cases and assist the general public in accessing how the courts operate and how the law is applied. Previous court judgment summarization research focuses on civil law or a particular jurisdiction's judgments. However, judges can refer to the judgments from all common law jurisdictions. Current summarization datasets are insufficient to satisfy the demands of summarizing precedents across multiple jurisdictions, especially when labeled data are scarce for many jurisdictions. To address the lack of datasets, we present CLSum, the first dataset for summarizing multi-jurisdictional common law court judgment documents. Besides, this is the first court judgment summarization work adopting large language models (LLMs) in data augmentation, summary generation, and evaluation. Specifically, we design an LLM-based data augmentation method incorporating legal knowledge. We also propose a legal knowledge enhanced evaluation metric based on LLM to assess the quality of generated judgment summaries. Our experimental results verify that the LLM-based summarization methods can perform well in the few-shot and zero-shot settings. Our LLM-based data augmentation method can mitigate the impact of low data resources. Furthermore, we carry out comprehensive comparative experiments to find essential model components and settings that are capable of enhancing summarization performance.

  • 5 authors
·
Mar 7, 2024

Equality before the Law: Legal Judgment Consistency Analysis for Fairness

In a legal system, judgment consistency is regarded as one of the most important manifestations of fairness. However, due to the complexity of factual elements that impact sentencing in real-world scenarios, few works have been done on quantitatively measuring judgment consistency towards real-world data. In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo), which aims to evaluate inconsistency between data groups divided by specific features (e.g., gender, region, race). We propose to simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups. Experimental results on the synthetic data verify the effectiveness of LInCo. We further employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency; (2) The level of regional inconsistency varies little across different time periods; (3) In general, judicial inconsistency is negatively correlated with the severity of the criminal charges. Besides, we use LInCo to evaluate the performance of several de-bias methods, such as adversarial learning, and find that these mechanisms can effectively help LJP models to avoid suffering from data bias.

  • 8 authors
·
Mar 25, 2021

NyayaAnumana & INLegalLlama: The Largest Indian Legal Judgment Prediction Dataset and Specialized Language Model for Enhanced Decision Analysis

The integration of artificial intelligence (AI) in legal judgment prediction (LJP) has the potential to transform the legal landscape, particularly in jurisdictions like India, where a significant backlog of cases burdens the legal system. This paper introduces NyayaAnumana, the largest and most diverse corpus of Indian legal cases compiled for LJP, encompassing a total of 7,02,945 preprocessed cases. NyayaAnumana, which combines the words "Nyay" (judgment) and "Anuman" (prediction or inference) respectively for most major Indian languages, includes a wide range of cases from the Supreme Court, High Courts, Tribunal Courts, District Courts, and Daily Orders and, thus, provides unparalleled diversity and coverage. Our dataset surpasses existing datasets like PredEx and ILDC, offering a comprehensive foundation for advanced AI research in the legal domain. In addition to the dataset, we present INLegalLlama, a domain-specific generative large language model (LLM) tailored to the intricacies of the Indian legal system. It is developed through a two-phase training approach over a base LLaMa model. First, Indian legal documents are injected using continual pretraining. Second, task-specific supervised finetuning is done. This method allows the model to achieve a deeper understanding of legal contexts. Our experiments demonstrate that incorporating diverse court data significantly boosts model accuracy, achieving approximately 90% F1-score in prediction tasks. INLegalLlama not only improves prediction accuracy but also offers comprehensible explanations, addressing the need for explainability in AI-assisted legal decisions.

  • 6 authors
·
Dec 11, 2024

A Computational Analysis of Oral Argument in the Supreme Court

As the most public component of the Supreme Court's decision-making process, oral argument receives an out-sized share of attention in the popular media. Despite its prominence, however, the basic function and operation of oral argument as an institution remains poorly understood, as political scientists and legal scholars continue to debate even the most fundamental questions about its role. Past study of oral argument has tended to focus on discrete, quantifiable attributes of oral argument, such as the number of questions asked to each advocate, the party of the Justices' appointing president, or the ideological implications of the case on appeal. Such studies allow broad generalizations about oral argument and judicial decision making: Justices tend to vote in accordance with their ideological preferences, and they tend to ask more questions when they are skeptical of a party's position. But they tell us little about the actual goings on at oral argument -- the running dialog between Justice and advocate that is the heart of the institution. This Article fills that void, using machine learning techniques to, for the first time, construct predictive models of judicial decision making based not on oral argument's superficial features or on factors external to oral argument, such as where the case falls on a liberal-conservative spectrum, but on the actual content of the oral argument itself -- the Justices' questions to each side. The resultant models offer an important new window into aspects of oral argument that have long resisted empirical study, including the Justices' individual questioning styles, how each expresses skepticism, and which of the Justices' questions are most central to oral argument dialog.

  • 1 authors
·
Jun 5, 2023

Language Models And A Second Opinion Use Case: The Pocket Professional

This research tests the role of Large Language Models (LLMs) as formal second opinion tools in professional decision-making, particularly focusing on complex medical cases where even experienced physicians seek peer consultation. The work analyzed 183 challenging medical cases from Medscape over a 20-month period, testing multiple LLMs' performance against crowd-sourced physician responses. A key finding was the high overall score possible in the latest foundational models (>80% accuracy compared to consensus opinion), which exceeds most human metrics reported on the same clinical cases (450 pages of patient profiles, test results). The study rates the LLMs' performance disparity between straightforward cases (>81% accuracy) and complex scenarios (43% accuracy), particularly in these cases generating substantial debate among human physicians. The research demonstrates that LLMs may be valuable as generators of comprehensive differential diagnoses rather than as primary diagnostic tools, potentially helping to counter cognitive biases in clinical decision-making, reduce cognitive loads, and thus remove some sources of medical error. The inclusion of a second comparative legal dataset (Supreme Court cases, N=21) provides added empirical context to the AI use to foster second opinions, though these legal challenges proved considerably easier for LLMs to analyze. In addition to the original contributions of empirical evidence for LLM accuracy, the research aggregated a novel benchmark for others to score highly contested question and answer reliability between both LLMs and disagreeing human practitioners. These results suggest that the optimal deployment of LLMs in professional settings may differ substantially from current approaches that emphasize automation of routine tasks.

  • 1 authors
·
Oct 27, 2024 2

LawFlow : Collecting and Simulating Lawyers' Thought Processes

Legal practitioners, particularly those early in their careers, face complex, high-stakes tasks that require adaptive, context-sensitive reasoning. While AI holds promise in supporting legal work, current datasets and models are narrowly focused on isolated subtasks and fail to capture the end-to-end decision-making required in real-world practice. To address this gap, we introduce LawFlow, a dataset of complete end-to-end legal workflows collected from trained law students, grounded in real-world business entity formation scenarios. Unlike prior datasets focused on input-output pairs or linear chains of thought, LawFlow captures dynamic, modular, and iterative reasoning processes that reflect the ambiguity, revision, and client-adaptive strategies of legal practice. Using LawFlow, we compare human and LLM-generated workflows, revealing systematic differences in structure, reasoning flexibility, and plan execution. Human workflows tend to be modular and adaptive, while LLM workflows are more sequential, exhaustive, and less sensitive to downstream implications. Our findings also suggest that legal professionals prefer AI to carry out supportive roles, such as brainstorming, identifying blind spots, and surfacing alternatives, rather than executing complex workflows end-to-end. Building on these findings, we propose a set of design suggestions, rooted in empirical observations, that align AI assistance with human goals of clarity, completeness, creativity, and efficiency, through hybrid planning, adaptive execution, and decision-point support. Our results highlight both the current limitations of LLMs in supporting complex legal workflows and opportunities for developing more collaborative, reasoning-aware legal AI systems. All data and code are available on our project page (https://minnesotanlp.github.io/LawFlow-website/).

MUSER: A Multi-View Similar Case Retrieval Dataset

Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness. However, existing SCR datasets only focus on the fact description section when judging the similarity between cases, ignoring other valuable sections (e.g., the court's opinion) that can provide insightful reasoning process behind. Furthermore, the case similarities are typically measured solely by the textual semantics of the fact descriptions, which may fail to capture the full complexity of legal cases from the perspective of legal knowledge. In this work, we present MUSER, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations. Specifically, we select three perspectives (legal fact, dispute focus, and law statutory) and build a comprehensive and structured label schema of legal elements for each of them, to enable accurate and knowledgeable evaluation of case similarities. The constructed dataset originates from Chinese civil cases and contains 100 query cases and 4,024 candidate cases. We implement several text classification algorithms for legal element prediction and various retrieval methods for retrieving similar cases on MUSER. The experimental results indicate that incorporating legal elements can benefit the performance of SCR models, but further efforts are still required to address the remaining challenges posed by MUSER. The source code and dataset are released at https://github.com/THUlawtech/MUSER.

  • 7 authors
·
Oct 24, 2023

Empirical analysis of Binding Precedent efficiency in the Brazilian Supreme Court via Similar Case Retrieval

Binding precedents (S\'umulas Vinculantes) constitute a juridical instrument unique to the Brazilian legal system and whose objectives include the protection of the Federal Supreme Court against repetitive demands. Studies of the effectiveness of these instruments in decreasing the Court's exposure to similar cases, however, indicate that they tend to fail in such a direction, with some of the binding precedents seemingly creating new demands. We empirically assess the legal impact of five binding precedents, 11, 14, 17, 26 and 37, at the highest court level through their effects on the legal subjects they address. This analysis is only possible through the comparison of the Court's ruling about the precedents' themes before they are created, which means that these decisions should be detected through techniques of Similar Case Retrieval. The contributions of this article are therefore twofold: on the mathematical side, we compare the uses of different methods of Natural Language Processing -- TF-IDF, LSTM, BERT, and regex -- for Similar Case Retrieval, whereas on the legal side, we contrast the inefficiency of these binding precedents with a set of hypotheses that may justify their repeated usage. We observe that the deep learning models performed significantly worse in the specific Similar Case Retrieval task and that the reasons for binding precedents to fail in responding to repetitive demand are heterogeneous and case-dependent, making it impossible to single out a specific cause.

  • 6 authors
·
Jul 9, 2024

Lawma: The Power of Specialization for Legal Tasks

Annotation and classification of legal text are central components of empirical legal research. Traditionally, these tasks are often delegated to trained research assistants. Motivated by the advances in language modeling, empirical legal scholars are increasingly turning to prompting commercial models, hoping that it will alleviate the significant cost of human annotation. Despite growing use, our understanding of how to best utilize large language models for legal tasks remains limited. We conduct a comprehensive study of 260 legal text classification tasks, nearly all new to the machine learning community. Starting from GPT-4 as a baseline, we show that it has non-trivial but highly varied zero-shot accuracy, often exhibiting performance that may be insufficient for legal work. We then demonstrate that a lightly fine-tuned Llama 3 model vastly outperforms GPT-4 on almost all tasks, typically by double-digit percentage points. We find that larger models respond better to fine-tuning than smaller models. A few tens to hundreds of examples suffice to achieve high classification accuracy. Notably, we can fine-tune a single model on all 260 tasks simultaneously at a small loss in accuracy relative to having a separate model for each task. Our work points to a viable alternative to the predominant practice of prompting commercial models. For concrete legal tasks with some available labeled data, researchers are better off using a fine-tuned open-source model.

  • 9 authors
·
Jul 23, 2024

NESTLE: a No-Code Tool for Statistical Analysis of Legal Corpus

The statistical analysis of large scale legal corpus can provide valuable legal insights. For such analysis one needs to (1) select a subset of the corpus using document retrieval tools, (2) structuralize text using information extraction (IE) systems, and (3) visualize the data for the statistical analysis. Each process demands either specialized tools or programming skills whereas no comprehensive unified "no-code" tools have been available. Especially for IE, if the target information is not predefined in the ontology of the IE system, one needs to build their own system. Here we provide NESTLE, a no code tool for large-scale statistical analysis of legal corpus. With NESTLE, users can search target documents, extract information, and visualize the structured data all via the chat interface with accompanying auxiliary GUI for the fine-level control. NESTLE consists of three main components: a search engine, an end-to-end IE system, and a Large Language Model (LLM) that glues the whole components together and provides the chat interface. Powered by LLM and the end-to-end IE system, NESTLE can extract any type of information that has not been predefined in the IE system opening up the possibility of unlimited customizable statistical analysis of the corpus without writing a single line of code. The use of the custom end-to-end IE system also enables faster and low-cost IE on large scale corpus. We validate our system on 15 Korean precedent IE tasks and 3 legal text classification tasks from LEXGLUE. The comprehensive experiments reveal NESTLE can achieve GPT-4 comparable performance by training the internal IE module with 4 human-labeled, and 192 LLM-labeled examples. The detailed analysis provides the insight on the trade-off between accuracy, time, and cost in building such system.

  • 3 authors
·
Sep 8, 2023

Statutory Construction and Interpretation for Artificial Intelligence

AI systems are increasingly governed by natural language principles, yet a key challenge arising from reliance on language remains underexplored: interpretive ambiguity. As in legal systems, ambiguity arises both from how these principles are written and how they are applied. But while legal systems use institutional safeguards to manage such ambiguity, such as transparent appellate review policing interpretive constraints, AI alignment pipelines offer no comparable protections. Different interpretations of the same rule can lead to inconsistent or unstable model behavior. Drawing on legal theory, we identify key gaps in current alignment pipelines by examining how legal systems constrain ambiguity at both the rule creation and rule application steps. We then propose a computational framework that mirrors two legal mechanisms: (1) a rule refinement pipeline that minimizes interpretive disagreement by revising ambiguous rules (analogous to agency rulemaking or iterative legislative action), and (2) prompt-based interpretive constraints that reduce inconsistency in rule application (analogous to legal canons that guide judicial discretion). We evaluate our framework on a 5,000-scenario subset of the WildChat dataset and show that both interventions significantly improve judgment consistency across a panel of reasonable interpreters. Our approach offers a first step toward systematically managing interpretive ambiguity, an essential step for building more robust, law-following AI systems.

  • 7 authors
·
Sep 1

Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools

Legal practice has witnessed a sharp rise in products incorporating artificial intelligence (AI). Such tools are designed to assist with a wide range of core legal tasks, from search and summarization of caselaw to document drafting. But the large language models used in these tools are prone to "hallucinate," or make up false information, making their use risky in high-stakes domains. Recently, certain legal research providers have touted methods such as retrieval-augmented generation (RAG) as "eliminating" (Casetext, 2023) or "avoid[ing]" hallucinations (Thomson Reuters, 2023), or guaranteeing "hallucination-free" legal citations (LexisNexis, 2023). Because of the closed nature of these systems, systematically assessing these claims is challenging. In this article, we design and report on the first preregistered empirical evaluation of AI-driven legal research tools. We demonstrate that the providers' claims are overstated. While hallucinations are reduced relative to general-purpose chatbots (GPT-4), we find that the AI research tools made by LexisNexis (Lexis+ AI) and Thomson Reuters (Westlaw AI-Assisted Research and Ask Practical Law AI) each hallucinate between 17% and 33% of the time. We also document substantial differences between systems in responsiveness and accuracy. Our article makes four key contributions. It is the first to assess and report the performance of RAG-based proprietary legal AI tools. Second, it introduces a comprehensive, preregistered dataset for identifying and understanding vulnerabilities in these systems. Third, it proposes a clear typology for differentiating between hallucinations and accurate legal responses. Last, it provides evidence to inform the responsibilities of legal professionals in supervising and verifying AI outputs, which remains a central open question for the responsible integration of AI into law.

  • 6 authors
·
May 30, 2024

Structured Legal Document Generation in India: A Model-Agnostic Wrapper Approach with VidhikDastaavej

Automating legal document drafting can significantly enhance efficiency, reduce manual effort, and streamline legal workflows. While prior research has explored tasks such as judgment prediction and case summarization, the structured generation of private legal documents in the Indian legal domain remains largely unaddressed. To bridge this gap, we introduce VidhikDastaavej, a novel, anonymized dataset of private legal documents, and develop NyayaShilp, a fine-tuned legal document generation model specifically adapted to Indian legal texts. We propose a Model-Agnostic Wrapper (MAW), a two-step framework that first generates structured section titles and then iteratively produces content while leveraging retrieval-based mechanisms to ensure coherence and factual accuracy. We benchmark multiple open-source LLMs, including instruction-tuned and domain-adapted versions, alongside proprietary models for comparison. Our findings indicate that while direct fine-tuning on small datasets does not always yield improvements, our structured wrapper significantly enhances coherence, factual adherence, and overall document quality while mitigating hallucinations. To ensure real-world applicability, we developed a Human-in-the-Loop (HITL) Document Generation System, an interactive user interface that enables users to specify document types, refine section details, and generate structured legal drafts. This tool allows legal professionals and researchers to generate, validate, and refine AI-generated legal documents efficiently. Extensive evaluations, including expert assessments, confirm that our framework achieves high reliability in structured legal drafting. This research establishes a scalable and adaptable foundation for AI-assisted legal drafting in India, offering an effective approach to structured legal document generation.

  • 6 authors
·
Apr 4

ECtHR-PCR: A Dataset for Precedent Understanding and Prior Case Retrieval in the European Court of Human Rights

In common law jurisdictions, legal practitioners rely on precedents to construct arguments, in line with the doctrine of stare decisis. As the number of cases grow over the years, prior case retrieval (PCR) has garnered significant attention. Besides lacking real-world scale, existing PCR datasets do not simulate a realistic setting, because their queries use complete case documents while only masking references to prior cases. The query is thereby exposed to legal reasoning not yet available when constructing an argument for an undecided case as well as spurious patterns left behind by citation masks, potentially short-circuiting a comprehensive understanding of case facts and legal principles. To address these limitations, we introduce a PCR dataset based on judgements from the European Court of Human Rights (ECtHR), which explicitly separate facts from arguments and exhibit precedential practices, aiding us to develop this PCR dataset to foster systems' comprehensive understanding. We benchmark different lexical and dense retrieval approaches with various negative sampling strategies, adapting them to deal with long text sequences using hierarchical variants. We found that difficulty-based negative sampling strategies were not effective for the PCR task, highlighting the need for investigation into domain-specific difficulty criteria. Furthermore, we observe performance of the dense models degrade with time and calls for further research into temporal adaptation of retrieval models. Additionally, we assess the influence of different views , Halsbury's and Goodhart's, in practice in ECtHR jurisdiction using PCR task.

  • 3 authors
·
Mar 31, 2024

LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset

As an important component of intelligent legal systems, legal case retrieval plays a critical role in ensuring judicial justice and fairness. However, the development of legal case retrieval technologies in the Chinese legal system is restricted by three problems in existing datasets: limited data size, narrow definitions of legal relevance, and naive candidate pooling strategies used in data sampling. To alleviate these issues, we introduce LeCaRDv2, a large-scale Legal Case Retrieval Dataset (version 2). It consists of 800 queries and 55,192 candidates extracted from 4.3 million criminal case documents. To the best of our knowledge, LeCaRDv2 is one of the largest Chinese legal case retrieval datasets, providing extensive coverage of criminal charges. Additionally, we enrich the existing relevance criteria by considering three key aspects: characterization, penalty, procedure. This comprehensive criteria enriches the dataset and may provides a more holistic perspective. Furthermore, we propose a two-level candidate set pooling strategy that effectively identify potential candidates for each query case. It's important to note that all cases in the dataset have been annotated by multiple legal experts specializing in criminal law. Their expertise ensures the accuracy and reliability of the annotations. We evaluate several state-of-the-art retrieval models at LeCaRDv2, demonstrating that there is still significant room for improvement in legal case retrieval. The details of LeCaRDv2 can be found at the anonymous website https://github.com/anonymous1113243/LeCaRDv2.

  • 6 authors
·
Oct 26, 2023

Potential and Perils of Large Language Models as Judges of Unstructured Textual Data

Rapid advancements in large language models have unlocked remarkable capabilities when it comes to processing and summarizing unstructured text data. This has implications for the analysis of rich, open-ended datasets, such as survey responses, where LLMs hold the promise of efficiently distilling key themes and sentiments. However, as organizations increasingly turn to these powerful AI systems to make sense of textual feedback, a critical question arises, can we trust LLMs to accurately represent the perspectives contained within these text based datasets? While LLMs excel at generating human-like summaries, there is a risk that their outputs may inadvertently diverge from the true substance of the original responses. Discrepancies between the LLM-generated outputs and the actual themes present in the data could lead to flawed decision-making, with far-reaching consequences for organizations. This research investigates the effectiveness of LLMs as judge models to evaluate the thematic alignment of summaries generated by other LLMs. We utilized an Anthropic Claude model to generate thematic summaries from open-ended survey responses, with Amazon's Titan Express, Nova Pro, and Meta's Llama serving as LLM judges. The LLM-as-judge approach was compared to human evaluations using Cohen's kappa, Spearman's rho, and Krippendorff's alpha, validating a scalable alternative to traditional human centric evaluation methods. Our findings reveal that while LLMs as judges offer a scalable solution comparable to human raters, humans may still excel at detecting subtle, context-specific nuances. This research contributes to the growing body of knowledge on AI assisted text analysis. We discuss limitations and provide recommendations for future research, emphasizing the need for careful consideration when generalizing LLM judge models across various contexts and use cases.

  • 10 authors
·
Jan 14 2

AI Approaches to Qualitative and Quantitative News Analytics on NATO Unity

The paper considers the use of GPT models with retrieval-augmented generation (RAG) for qualitative and quantitative analytics on NATO sentiments, NATO unity and NATO Article 5 trust opinion scores in different web sources: news sites found via Google Search API, Youtube videos with comments, and Reddit discussions. A RAG approach using GPT-4.1 model was applied to analyse news where NATO related topics were discussed. Two levels of RAG analytics were used: on the first level, the GPT model generates qualitative news summaries and quantitative opinion scores using zero-shot prompts; on the second level, the GPT model generates the summary of news summaries. Quantitative news opinion scores generated by the GPT model were analysed using Bayesian regression to get trend lines. The distributions found for the regression parameters make it possible to analyse an uncertainty in specified news opinion score trends. Obtained results show a downward trend for analysed scores of opinion related to NATO unity. This approach does not aim to conduct real political analysis; rather, it consider AI based approaches which can be used for further analytics as a part of a complex analytical approach. The obtained results demonstrate that the use of GPT models for news analysis can give informative qualitative and quantitative analytics, providing important insights. The dynamic model based on neural ordinary differential equations was considered for modelling public opinions. This approach makes it possible to analyse different scenarios for evolving public opinions.

  • 1 authors
·
May 8

JudgeBench: A Benchmark for Evaluating LLM-based Judges

LLM-based judges have emerged as a scalable alternative to human evaluation and are increasingly used to assess, compare, and improve models. However, the reliability of LLM-based judges themselves is rarely scrutinized. As LLMs become more advanced, their responses grow more sophisticated, requiring stronger judges to evaluate them. Existing benchmarks primarily focus on a judge's alignment with human preferences, but often fail to account for more challenging tasks where crowdsourced human preference is a poor indicator of factual and logical correctness. To address this, we propose a novel evaluation framework to objectively evaluate LLM-based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding. JudgeBench leverages a novel pipeline for converting existing difficult datasets into challenging response pairs with preference labels reflecting objective correctness. Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks, with many strong models (e.g., GPT-4o) performing just slightly better than random guessing. Overall, JudgeBench offers a reliable platform for assessing increasingly advanced LLM-based judges. Data and code are available at https://github.com/ScalerLab/JudgeBench .

  • 8 authors
·
Oct 16, 2024 2

A Prescriptive Learning Analytics Framework: Beyond Predictive Modelling and onto Explainable AI with Prescriptive Analytics and ChatGPT

A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of prediction only. The component of predictive analytics concerned with interpreting the internals of the models and explaining their predictions for individual cases to stakeholders has largely been neglected. Additionally, works that attempt to employ data-driven prescriptive analytics to automatically generate evidence-based remedial advice for at-risk learners are in their infancy. eXplainable AI is a field that has recently emerged providing cutting-edge tools which support transparent predictive analytics and techniques for generating tailored advice for at-risk students. This study proposes a novel framework that unifies both transparent machine learning as well as techniques for enabling prescriptive analytics, while integrating the latest advances in large language models. This work practically demonstrates the proposed framework using predictive models for identifying at-risk learners of programme non-completion. The study then further demonstrates how predictive modelling can be augmented with prescriptive analytics on two case studies in order to generate human-readable prescriptive feedback for those who are at risk using ChatGPT.

  • 1 authors
·
Aug 30, 2022

InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation

Data analytics is essential for extracting valuable insights from data that can assist organizations in making effective decisions. We introduce InsightBench, a benchmark dataset with three key features. First, it consists of 100 datasets representing diverse business use cases such as finance and incident management, each accompanied by a carefully curated set of insights planted in the datasets. Second, unlike existing benchmarks focusing on answering single queries, InsightBench evaluates agents based on their ability to perform end-to-end data analytics, including formulating questions, interpreting answers, and generating a summary of insights and actionable steps. Third, we conducted comprehensive quality assurance to ensure that each dataset in the benchmark had clear goals and included relevant and meaningful questions and analysis. Furthermore, we implement a two-way evaluation mechanism using LLaMA-3 as an effective, open-source evaluator to assess agents' ability to extract insights. We also propose AgentPoirot, our baseline data analysis agent capable of performing end-to-end data analytics. Our evaluation on InsightBench shows that AgentPoirot outperforms existing approaches (such as Pandas Agent) that focus on resolving single queries. We also compare the performance of open- and closed-source LLMs and various evaluation strategies. Overall, this benchmark serves as a testbed to motivate further development in comprehensive automated data analytics and can be accessed here: https://github.com/ServiceNow/insight-bench.

  • 14 authors
·
Jul 8, 2024

Interpretable Long-Form Legal Question Answering with Retrieval-Augmented Large Language Models

Many individuals are likely to face a legal dispute at some point in their lives, but their lack of understanding of how to navigate these complex issues often renders them vulnerable. The advancement of natural language processing opens new avenues for bridging this legal literacy gap through the development of automated legal aid systems. However, existing legal question answering (LQA) approaches often suffer from a narrow scope, being either confined to specific legal domains or limited to brief, uninformative responses. In this work, we propose an end-to-end methodology designed to generate long-form answers to any statutory law questions, utilizing a "retrieve-then-read" pipeline. To support this approach, we introduce and release the Long-form Legal Question Answering (LLeQA) dataset, comprising 1,868 expert-annotated legal questions in the French language, complete with detailed answers rooted in pertinent legal provisions. Our experimental results demonstrate promising performance on automatic evaluation metrics, but a qualitative analysis uncovers areas for refinement. As one of the only comprehensive, expert-annotated long-form LQA dataset, LLeQA has the potential to not only accelerate research towards resolving a significant real-world issue, but also act as a rigorous benchmark for evaluating NLP models in specialized domains. We publicly release our code, data, and models.

  • 3 authors
·
Sep 29, 2023 1

Named entity recognition for Serbian legal documents: Design, methodology and dataset development

Recent advancements in the field of natural language processing (NLP) and especially large language models (LLMs) and their numerous applications have brought research attention to design of different document processing tools and enhancements in the process of document archiving, search and retrieval. Domain of official, legal documents is especially interesting due to vast amount of data generated on the daily basis, as well as the significant community of interested practitioners (lawyers, law offices, administrative workers, state institutions and citizens). Providing efficient ways for automation of everyday work involving legal documents is therefore expected to have significant impact in different fields. In this work we present one LLM based solution for Named Entity Recognition (NER) in the case of legal documents written in Serbian language. It leverages on the pre-trained bidirectional encoder representations from transformers (BERT), which had been carefully adapted to the specific task of identifying and classifying specific data points from textual content. Besides novel dataset development for Serbian language (involving public court rulings), presented system design and applied methodology, the paper also discusses achieved performance metrics and their implications for objective assessment of the proposed solution. Performed cross-validation tests on the created manually labeled dataset with mean F_1 score of 0.96 and additional results on the examples of intentionally modified text inputs confirm applicability of the proposed system design and robustness of the developed NER solution.

  • 2 authors
·
Feb 14

Deep Learning, Machine Learning, Advancing Big Data Analytics and Management

Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence.

  • 26 authors
·
Dec 3, 2024

Methods for Legal Citation Prediction in the Age of LLMs: An Australian Law Case Study

In recent years, Large Language Models (LLMs) have shown great potential across a wide range of legal tasks. Despite these advances, mitigating hallucination remains a significant challenge, with state-of-the-art LLMs still frequently generating incorrect legal references. In this paper, we focus on the problem of legal citation prediction within the Australian law context, where correctly identifying and citing relevant legislations or precedents is critical. We compare several approaches: prompting general purpose and law-specialised LLMs, retrieval-only pipelines with both generic and domain-specific embeddings, task-specific instruction-tuning of LLMs, and hybrid strategies that combine LLMs with retrieval augmentation, query expansion, or voting ensembles. Our findings indicate that domain-specific pre-training alone is insufficient for achieving satisfactory citation accuracy even after law-specialised pre-training. In contrast, instruction tuning on our task-specific dataset dramatically boosts performance reaching the best results across all settings. We also highlight that database granularity along with the type of embeddings play a critical role in the performance of retrieval systems. Among retrieval-based approaches, hybrid methods consistently outperform retrieval-only setups, and among these, ensemble voting delivers the best result by combining the predictive quality of instruction-tuned LLMs with the retrieval system.

  • 3 authors
·
Dec 9, 2024

JurisTCU: A Brazilian Portuguese Information Retrieval Dataset with Query Relevance Judgments

This paper introduces JurisTCU, a Brazilian Portuguese dataset for legal information retrieval (LIR). The dataset is freely available and consists of 16,045 jurisprudential documents from the Brazilian Federal Court of Accounts, along with 150 queries annotated with relevance judgments. It addresses the scarcity of Portuguese-language LIR datasets with query relevance annotations. The queries are organized into three groups: real user keyword-based queries, synthetic keyword-based queries, and synthetic question-based queries. Relevance judgments were produced through a hybrid approach combining LLM-based scoring with expert domain validation. We used JurisTCU in 14 experiments using lexical search (document expansion methods) and semantic search (BERT-based and OpenAI embeddings). We show that the document expansion methods significantly improve the performance of standard BM25 search on this dataset, with improvements exceeding 45% in P@10, R@10, and nDCG@10 metrics when evaluating short keyword-based queries. Among the embedding models, the OpenAI models produced the best results, with improvements of approximately 70% in P@10, R@10, and nDCG@10 metrics for short keyword-based queries, suggesting that these dense embeddings capture semantic relationships in this domain, surpassing the reliance on lexical terms. Besides offering a dataset for the Portuguese-language IR research community, suitable for evaluating search systems, the results also contribute to enhancing a search system highly relevant to Brazilian citizens.

  • 5 authors
·
Mar 11

How Ready are Pre-trained Abstractive Models and LLMs for Legal Case Judgement Summarization?

Automatic summarization of legal case judgements has traditionally been attempted by using extractive summarization methods. However, in recent years, abstractive summarization models are gaining popularity since they can generate more natural and coherent summaries. Legal domain-specific pre-trained abstractive summarization models are now available. Moreover, general-domain pre-trained Large Language Models (LLMs), such as ChatGPT, are known to generate high-quality text and have the capacity for text summarization. Hence it is natural to ask if these models are ready for off-the-shelf application to automatically generate abstractive summaries for case judgements. To explore this question, we apply several state-of-the-art domain-specific abstractive summarization models and general-domain LLMs on Indian court case judgements, and check the quality of the generated summaries. In addition to standard metrics for summary quality, we check for inconsistencies and hallucinations in the summaries. We see that abstractive summarization models generally achieve slightly higher scores than extractive models in terms of standard summary evaluation metrics such as ROUGE and BLEU. However, we often find inconsistent or hallucinated information in the generated abstractive summaries. Overall, our investigation indicates that the pre-trained abstractive summarization models and LLMs are not yet ready for fully automatic deployment for case judgement summarization; rather a human-in-the-loop approach including manual checks for inconsistencies is more suitable at present.

  • 3 authors
·
Jun 1, 2023

No Free Labels: Limitations of LLM-as-a-Judge Without Human Grounding

LLM-as-a-Judge is a framework that uses an LLM (large language model) to evaluate the quality of natural language text - typically text that is also generated by an LLM. This framework holds great promise due to its relative low-cost, ease of use, and strong correlations with human stylistic preferences. However, LLM Judges have been shown to exhibit biases that can distort their judgments. We evaluate how well LLM Judges can grade whether a given response to a conversational question is correct, an ability crucial to soundly estimating the overall response quality. To do so, we create and publicly release a human-annotated dataset with labels of correctness for 1,200 LLM responses. We source questions from a combination of existing datasets and a novel, challenging benchmark (BFF-Bench) created for this analysis. We demonstrate a strong connection between an LLM's ability to correctly answer a question and grade responses to that question. Although aggregate level statistics might imply a judge has high agreement with human annotators, it will struggle on the subset of questions it could not answer. To address this issue, we recommend a simple solution: provide the judge with a correct, human-written reference answer. We perform an in-depth analysis on how reference quality can affect the performance of an LLM Judge. We show that providing a weaker judge (e.g. Qwen 2.5 7B) with higher quality references reaches better agreement with human annotators than a stronger judge (e.g. GPT-4o) with synthetic references.

  • 5 authors
·
Mar 6

How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods

Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance.

  • 3 authors
·
Aug 18, 2023

Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities

With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (https://clearinghouse.net),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at https://multilexsum.github.io.

  • 6 authors
·
Jun 22, 2022

AI Debate Aids Assessment of Controversial Claims

As AI grows more powerful, it will increasingly shape how we understand the world. But with this influence comes the risk of amplifying misinformation and deepening social divides-especially on consequential topics like public health where factual accuracy directly impacts well-being. Scalable Oversight aims to ensure AI truthfulness by enabling humans to supervise systems that may exceed human capabilities--yet humans themselves hold different beliefs and biases that impair their judgment. We study whether AI debate can guide biased judges toward the truth by having two AI systems debate opposing sides of controversial COVID-19 factuality claims where people hold strong prior beliefs. We conduct two studies: one with human judges holding either mainstream or skeptical beliefs evaluating factuality claims through AI-assisted debate or consultancy protocols, and a second examining the same problem with personalized AI judges designed to mimic these different human belief systems. In our human study, we find that debate-where two AI advisor systems present opposing evidence-based arguments-consistently improves judgment accuracy and confidence calibration, outperforming consultancy with a single-advisor system by 10% overall. The improvement is most significant for judges with mainstream beliefs (+15.2% accuracy), though debate also helps skeptical judges who initially misjudge claims move toward accurate views (+4.7% accuracy). In our AI judge study, we find that AI judges with human-like personas achieve even higher accuracy (78.5%) than human judges (70.1%) and default AI judges without personas (69.8%), suggesting their potential for supervising frontier AI models. These findings highlight AI debate as a promising path toward scalable, bias-resilient oversight--leveraging both diverse human and AI judgments to move closer to truth in contested domains.

  • 14 authors
·
Jun 2

Automating Legal Interpretation with LLMs: Retrieval, Generation, and Evaluation

Interpreting the law is always essential for the law to adapt to the ever-changing society. It is a critical and challenging task even for legal practitioners, as it requires meticulous and professional annotations and summarizations by legal experts, which are admittedly time-consuming and expensive to collect at scale. To alleviate the burden on legal experts, we propose a method for automated legal interpretation. Specifically, by emulating doctrinal legal research, we introduce a novel framework, ATRIE, to address Legal Concept Interpretation, a typical task in legal interpretation. ATRIE utilizes large language models (LLMs) to AuTomatically Retrieve concept-related information, Interpret legal concepts, and Evaluate generated interpretations, eliminating dependence on legal experts. ATRIE comprises a legal concept interpreter and a legal concept interpretation evaluator. The interpreter uses LLMs to retrieve relevant information from previous cases and interpret legal concepts. The evaluator uses performance changes on Legal Concept Entailment, a downstream task we propose, as a proxy of interpretation quality. Automated and multifaceted human evaluations indicate that the quality of our interpretations is comparable to those written by legal experts, with superior comprehensiveness and readability. Although there remains a slight gap in accuracy, it can already assist legal practitioners in improving the efficiency of legal interpretation.

  • 4 authors
·
Jan 3

Are LLMs ready to help non-expert users to make charts of official statistics data?

In this time when biased information, deep fakes, and propaganda proliferate, the accessibility of reliable data sources is more important than ever. National statistical institutes provide curated data that contain quantitative information on a wide range of topics. However, that information is typically spread across many tables and the plain numbers may be arduous to process. Hence, this open data may be practically inaccessible. We ask the question "Are current Generative AI models capable of facilitating the identification of the right data and the fully-automatic creation of charts to provide information in visual form, corresponding to user queries?". We present a structured evaluation of recent large language models' (LLMs) capabilities to generate charts from complex data in response to user queries. Working with diverse public data from Statistics Netherlands, we assessed multiple LLMs on their ability to identify relevant data tables, perform necessary manipulations, and generate appropriate visualizations autonomously. We propose a new evaluation framework spanning three dimensions: data retrieval & pre-processing, code quality, and visual representation. Results indicate that locating and processing the correct data represents the most significant challenge. Additionally, LLMs rarely implement visualization best practices without explicit guidance. When supplemented with information about effective chart design, models showed marked improvement in representation scores. Furthermore, an agentic approach with iterative self-evaluation led to excellent performance across all evaluation dimensions. These findings suggest that LLMs' effectiveness for automated chart generation can be enhanced through appropriate scaffolding and feedback mechanisms, and that systems can already reach the necessary accuracy across the three evaluation dimensions.

  • 4 authors
·
Sep 3

Solving the unsolvable: Translating case law in Hong Kong

This paper addresses the challenges translating case law under Hong Kong's bilingual legal system. It highlights the initial success of translating all written statutes into Chinese before the 1997 handover, a task mandated by the Basic Law. The effort involved significant collaboration among legal, linguistic, and translation experts, resulting in a comprehensive and culturally appropriate bilingual legal system. However, translating case law remains a significant challenge due to the sheer volume and continuous growth of judicial decisions. The paper critiques the governments and judiciarys sporadic and uncoordinated efforts to translate case law, contrasting it with the thorough approach previously taken for statute translation. Although the government acknowledges the importance of legal bilingualism, it lacks a sustainable strategy for translating case law. The Judiciarys position that translating all judgments is unnecessary, unrealistic, and not cost-effectiveis analyzed and critiqued for its impact on legal transparency and public trust. A proposed solution involves leveraging machine translation technology through a human-machine interactive translation platform, which undergoes two major transitions. Initially based on a neural model, the platform transitions to using a large language model for improved translation accuracy. Furthermore, it evolves from a single-agent system to a multi-agent system, incorporating Translator, Annotator, and Proofreader agents. This multi-agent approach, supported by a grant, aims to facilitate efficient, high-quality translation of judicial judgments by integrating advanced artificial intelligence and continuous feedback mechanisms, thus better meeting the needs of a bilingual legal system.

  • 5 authors
·
Jan 16

Flexible Model Aggregation for Quantile Regression

Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.

  • 5 authors
·
Feb 26, 2021

Judging LLMs on a Simplex

Automated evaluation of free-form outputs from large language models (LLMs) is challenging because many distinct answers can be equally valid. A common practice is to use LLMs themselves as judges, but the theoretical properties of this approach are not yet well understood. We show that a geometric framework that represents both judges and candidates as points on a probability simplex can provide helpful insight on what is or is not identifiable using LLM judges. Our theoretical analysis uncovers a "phase transition" in ranking identifiability: for binary scoring systems, true rankings are identifiable even with weak judges under mild assumptions, while rankings become non-identifiable for three or more scoring levels even with infinite data, absent additional prior knowledge. This non-identifiability highlights how uncertainty in rankings stems from not only aleatoric uncertainty (i.e., inherent stochasticity in the data) but also epistemic uncertainty regarding which assumptions hold, an aspect that has received limited attention until now. To integrate both types of uncertainty, we use Bayesian inference to encode assumptions as priors and conduct sensitivity analysis of ranking estimates and credible intervals. Empirical evaluations across multiple benchmarks demonstrate that Bayesian inference yields more accurate rankings and substantially improves coverage rates. These results underscore the importance of taking a more holistic approach to uncertainty quantification when using LLMs as judges.

  • 4 authors
·
May 28

On Verifiable Legal Reasoning: A Multi-Agent Framework with Formalized Knowledge Representations

Legal reasoning requires both precise interpretation of statutory language and consistent application of complex rules, presenting significant challenges for AI systems. This paper introduces a modular multi-agent framework that decomposes legal reasoning into distinct knowledge acquisition and application stages. In the first stage, specialized agents extract legal concepts and formalize rules to create verifiable intermediate representations of statutes. The second stage applies this knowledge to specific cases through three steps: analyzing queries to map case facts onto the ontology schema, performing symbolic inference to derive logically entailed conclusions, and generating final answers using a programmatic implementation that operationalizes the ontological knowledge. This bridging of natural language understanding with symbolic reasoning provides explicit and verifiable inspection points, significantly enhancing transparency compared to end-to-end approaches. Evaluation on statutory tax calculation tasks demonstrates substantial improvements, with foundational models achieving 76.4\% accuracy compared to 18.8\% baseline performance, effectively narrowing the performance gap between reasoning and foundational models. These findings suggest that modular architectures with formalized knowledge representations can make sophisticated legal reasoning more accessible through computationally efficient models while enhancing consistency and explainability in AI legal reasoning, establishing a foundation for future research into more transparent, trustworthy, and effective AI systems for legal domain.

  • 2 authors
·
Aug 31

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset

While self-supervised learning has made rapid advances in natural language processing, it remains unclear when researchers should engage in resource-intensive domain-specific pretraining (domain pretraining). The law, puzzlingly, has yielded few documented instances of substantial gains to domain pretraining in spite of the fact that legal language is widely seen to be unique. We hypothesize that these existing results stem from the fact that existing legal NLP tasks are too easy and fail to meet conditions for when domain pretraining can help. To address this, we first present CaseHOLD (Case Holdings On Legal Decisions), a new dataset comprised of over 53,000+ multiple choice questions to identify the relevant holding of a cited case. This dataset presents a fundamental task to lawyers and is both legally meaningful and difficult from an NLP perspective (F1 of 0.4 with a BiLSTM baseline). Second, we assess performance gains on CaseHOLD and existing legal NLP datasets. While a Transformer architecture (BERT) pretrained on a general corpus (Google Books and Wikipedia) improves performance, domain pretraining (using corpus of approximately 3.5M decisions across all courts in the U.S. that is larger than BERT's) with a custom legal vocabulary exhibits the most substantial performance gains with CaseHOLD (gain of 7.2% on F1, representing a 12% improvement on BERT) and consistent performance gains across two other legal tasks. Third, we show that domain pretraining may be warranted when the task exhibits sufficient similarity to the pretraining corpus: the level of performance increase in three legal tasks was directly tied to the domain specificity of the task. Our findings inform when researchers should engage resource-intensive pretraining and show that Transformer-based architectures, too, learn embeddings suggestive of distinct legal language.

  • 5 authors
·
Apr 17, 2021

Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview

The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them.

  • 3 authors
·
Jul 5, 2024