Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBlockwise Stochastic Variance-Reduced Methods with Parallel Speedup for Multi-Block Bilevel Optimization
In this paper, we consider non-convex multi-block bilevel optimization (MBBO) problems, which involve mgg 1 lower level problems and have important applications in machine learning. Designing a stochastic gradient and controlling its variance is more intricate due to the hierarchical sampling of blocks and data and the unique challenge of estimating hyper-gradient. We aim to achieve three nice properties for our algorithm: (a) matching the state-of-the-art complexity of standard BO problems with a single block; (b) achieving parallel speedup by sampling I blocks and sampling B samples for each sampled block per-iteration; (c) avoiding the computation of the inverse of a high-dimensional Hessian matrix estimator. However, it is non-trivial to achieve all of these by observing that existing works only achieve one or two of these properties. To address the involved challenges for achieving (a, b, c), we propose two stochastic algorithms by using advanced blockwise variance-reduction techniques for tracking the Hessian matrices (for low-dimensional problems) or the Hessian-vector products (for high-dimensional problems), and prove an iteration complexity of O(mepsilon^{-3I(I<m)}{II} + mepsilon^{-3}{IB}) for finding an epsilon-stationary point under appropriate conditions. We also conduct experiments to verify the effectiveness of the proposed algorithms comparing with existing MBBO algorithms.
DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors
Machine Learning (ML) functions are becoming ubiquitous in latency- and privacy-sensitive IoT applications, prompting a shift toward near-sensor processing at the extreme edge and the consequent increasing adoption of Parallel Ultra-Low Power (PULP) IoT processors. These compute- and memory-constrained parallel architectures need to run efficiently a wide range of algorithms, including key Non-Neural ML kernels that compete favorably with Deep Neural Networks (DNNs) in terms of accuracy under severe resource constraints. In this paper, we focus on enabling efficient parallel execution of Non-Neural ML algorithms on two RISCV-based PULP platforms, namely GAP8, a commercial chip, and PULP-OPEN, a research platform running on an FPGA emulator. We optimized the parallel algorithms through a fine-grained analysis and intensive optimization to maximize the speedup, considering two alternative Floating-Point (FP) emulation libraries on GAP8 and the native FPU support on PULP-OPEN. Experimental results show that a target-optimized emulation library can lead to an average 1.61x runtime improvement and 37% energy reduction compared to a standard emulation library, while the native FPU support reaches up to 32.09x and 99%, respectively. In terms of parallel speedup, our design improves the sequential execution by 7.04x on average on the targeted octa-core platforms leading to energy and latency decrease up to 87%. Lastly, we present a comparison with the ARM Cortex-M4 microcontroller (MCU), a widely adopted commercial solution for edge deployments, which is 12.87x slower and 98% less energy-efficient than PULP-OPEN.
Tensorized NeuroEvolution of Augmenting Topologies for GPU Acceleration
The NeuroEvolution of Augmenting Topologies (NEAT) algorithm has received considerable recognition in the field of neuroevolution. Its effectiveness is derived from initiating with simple networks and incrementally evolving both their topologies and weights. Although its capability across various challenges is evident, the algorithm's computational efficiency remains an impediment, limiting its scalability potential. In response, this paper introduces a tensorization method for the NEAT algorithm, enabling the transformation of its diverse network topologies and associated operations into uniformly shaped tensors for computation. This advancement facilitates the execution of the NEAT algorithm in a parallelized manner across the entire population. Furthermore, we develop TensorNEAT, a library that implements the tensorized NEAT algorithm and its variants, such as CPPN and HyperNEAT. Building upon JAX, TensorNEAT promotes efficient parallel computations via automated function vectorization and hardware acceleration. Moreover, the TensorNEAT library supports various benchmark environments including Gym, Brax, and gymnax. Through evaluations across a spectrum of robotics control environments in Brax, TensorNEAT achieves up to 500x speedups compared to the existing implementations such as NEAT-Python. Source codes are available at: https://github.com/EMI-Group/tensorneat.
An LLM Compiler for Parallel Function Calling
Large Language Models (LLMs) have shown remarkable results on various complex reasoning benchmarks. The reasoning capabilities of LLMs enable them to execute function calls, using user-provided functions to overcome their inherent limitations, such as knowledge cutoffs, poor arithmetic skills, or lack of access to private data. This development has expanded LLMs' scope to include multi-function calling, where LLMs are equipped with a variety of functions and select the proper functions based on the context. Multi-function calling abilities of LLMs have catalyzed LLM-based software development, allowing them to tackle more complex problems. However, current methods for multi-function calling often require sequential reasoning and acting for each function which can result in high latency, cost, and sometimes inaccurate behavior. To address this, we introduce LLMCompiler, which executes functions in parallel to efficiently orchestrate multi-function calling. Drawing from the principles of classical compilers, LLMCompiler streamlines parallel function calling with three components: (i) an LLM Planner, formulating execution strategies and dependencies; (ii) a Task Fetching Unit, dispatching function calling tasks; and (iii) an Executor, executing these tasks in parallel. LLMCompiler automatically computes an optimized orchestration for the function calls and can be used with open-source models such as LLaMA-2. We have benchmarked LLMCompiler on a range of tasks including cases with non-trivial inter-dependency between function calls, as well as cases that require dynamic replanning based on intermediate results. We observe consistent latency speedup of up to 3.7x, cost savings of up to 6.7x, and accuracy improvement of up to ~9% as compared to ReAct. Additionally, LLMCompiler achieves up to 1.35x latency gain over OpenAI's recent parallel function calling, while achieving similar accuracy.
Falcon: Faster and Parallel Inference of Large Language Models through Enhanced Semi-Autoregressive Drafting and Custom-Designed Decoding Tree
Striking an optimal balance between minimal drafting latency and high speculation accuracy to enhance the inference speed of Large Language Models remains a significant challenge in speculative decoding. In this paper, we introduce Falcon, an innovative semi-autoregressive speculative decoding framework fashioned to augment both the drafter's parallelism and output quality. Falcon incorporates the Coupled Sequential Glancing Distillation technique, which fortifies inter-token dependencies within the same block, leading to increased speculation accuracy. We offer a comprehensive theoretical analysis to illuminate the underlying mechanisms. Additionally, we introduce a Custom-Designed Decoding Tree, which permits the drafter to generate multiple tokens in a single forward pass and accommodates multiple forward passes as needed, thereby boosting the number of drafted tokens and significantly improving the overall acceptance rate. Comprehensive evaluations on benchmark datasets such as MT-Bench, HumanEval, and GSM8K demonstrate Falcon's superior acceleration capabilities. The framework achieves a lossless speedup ratio ranging from 2.91x to 3.51x when tested on the Vicuna and LLaMA2-Chat model series. These results outstrip existing speculative decoding methods for LLMs, including Eagle, Medusa, Lookahead, SPS, and PLD, while maintaining a compact drafter architecture equivalent to merely two Transformer layers.
MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models
As inference on Large Language Models (LLMs) emerges as an important workload in machine learning applications, weight quantization has become a standard technique for efficient GPU deployment. Quantization not only reduces model size, but has also been shown to yield substantial speedups for single-user inference, due to reduced memory movement, with low accuracy impact. Yet, it remains open whether speedups are achievable also in batched settings with multiple parallel clients, which are highly relevant for practical serving. It is unclear whether GPU kernels can be designed to remain practically memory-bound, while supporting the substantially increased compute requirements of batched workloads. This paper resolves this question positively by describing the design of Mixed-precision Auto-Regressive LINear kernels, called MARLIN. Concretely, given a model whose weights are compressed via quantization to, e.g., 4 bits per element, MARLIN shows that batchsizes up to 16-32 can be supported with close to maximum (4times) quantization speedup, and larger batchsizes up to 64-128 with gradually decreasing, but still significant, acceleration. MARLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining, and bespoke quantization support. Our experiments show that MARLIN's near-optimal performance on individual LLM layers across different scenarios can also lead to end-to-end LLM inference speedups (of up to 2.8times) when integrated with the popular vLLM serving engine. Finally, MARLIN is extensible to further compression techniques, like NVIDIA 2:4 sparsity, leading to additional speedups.
Accelerate Parallelizable Reasoning via Parallel Decoding within One Sequence
Recent advances in reasoning models have demonstrated significant improvements in accuracy, particularly for complex tasks such as mathematical reasoning, by employing detailed and comprehensive reasoning processes. However, generating these lengthy reasoning sequences is computationally expensive and time-consuming. To address this inefficiency, we leverage the inherent parallelizability of certain tasks to accelerate the reasoning process. Specifically, when multiple parallel reasoning branches exist, we decode multiple tokens per step using a specialized attention mask, processing them within a single sequence, avoiding additional memory usage. Experimental results show that our method achieves over 100% speedup in decoding time while maintaining the answer quality.
EasySpec: Layer-Parallel Speculative Decoding for Efficient Multi-GPU Utilization
Speculative decoding is an effective and lossless method for Large Language Model (LLM) inference acceleration. It employs a smaller model to generate a draft token sequence, which is then verified by the original base model. In multi-GPU systems, inference latency can be further reduced through tensor parallelism (TP), while the optimal TP size of the draft model is typically smaller than that of the base model, leading to GPU idling during the drafting stage. To solve this problem, we propose EasySpec, a layer-parallel speculation strategy that optimizes the efficiency of multi-GPU utilization.EasySpec breaks the sequential execution order of layers in the drafting model, enabling multi-layer parallelization across devices, albeit with some induced approximation errors. After each drafting-and-verification iteration, the draft model's key-value (KV) cache is calibrated in a single forward pass, preventing long-term error accumulation at minimal additional latency. We evaluated EasySpec on several mainstream open-source LLMs, using smaller versions of models from the same series as drafters. The results demonstrate that EasySpec can achieve a peak speedup of 4.17x compared to vanilla decoding, while preserving the original distribution of the base LLMs. Specifically, the drafting stage can be accelerated by up to 1.62x with a maximum accuracy drop of only 7%, requiring no training or fine-tuning on the draft models.
Parallel Speculative Decoding with Adaptive Draft Length
Speculative decoding (SD), where an extra draft model is employed to provide multiple draft tokens first and then the original target model verifies these tokens in parallel, has shown great power for LLM inference acceleration. However, existing SD methods suffer from the mutual waiting problem, i.e., the target model gets stuck when the draft model is guessing tokens, and vice versa. This problem is directly incurred by the asynchronous execution of the draft model and the target model, and is exacerbated due to the fixed draft length in speculative decoding. To address these challenges, we propose a conceptually simple, flexible, and general framework to boost speculative decoding, namely Parallel spEculative decoding with Adaptive dRaft Length (PEARL). Specifically, PEARL proposes pre-verify to verify the first draft token in advance during the drafting phase, and post-verify to generate more draft tokens during the verification phase. PEARL parallels the drafting phase and the verification phase via applying the two strategies, and achieves adaptive draft length for different scenarios, which effectively alleviates the mutual waiting problem. Moreover, we theoretically demonstrate that the mean accepted tokens of PEARL is more than existing draft-then-verify works. Experiments on various text generation benchmarks demonstrate the effectiveness of our \name, leading to a superior speedup performance up to 3.79times and 1.52times, compared to auto-regressive decoding and vanilla speculative decoding, respectively.
SpecExec: Massively Parallel Speculative Decoding for Interactive LLM Inference on Consumer Devices
As large language models gain widespread adoption, running them efficiently becomes crucial. Recent works on LLM inference use speculative decoding to achieve extreme speedups. However, most of these works implicitly design their algorithms for high-end datacenter hardware. In this work, we ask the opposite question: how fast can we run LLMs on consumer machines? Consumer GPUs can no longer fit the largest available models (50B+ parameters) and must offload them to RAM or SSD. When running with offloaded parameters, the inference engine can process batches of hundreds or thousands of tokens at the same time as just one token, making it a natural fit for speculative decoding. We propose SpecExec (Speculative Execution), a simple parallel decoding method that can generate up to 20 tokens per target model iteration for popular LLM families. It utilizes the high spikiness of the token probabilities distribution in modern LLMs and a high degree of alignment between model output probabilities. SpecExec takes the most probable tokens continuation from the draft model to build a "cache" tree for the target model, which then gets validated in a single pass. Using SpecExec, we demonstrate inference of 50B+ parameter LLMs on consumer GPUs with RAM offloading at 4-6 tokens per second with 4-bit quantization or 2-3 tokens per second with 16-bit weights.
POPGym Arcade: Parallel Pixelated POMDPs
We introduce POPGym Arcade, a benchmark consisting of 7 pixel-based environments each with three difficulties, utilizing a single observation and action space. Each environment offers both fully observable and partially observable variants, enabling counterfactual studies on partial observability. POPGym Arcade utilizes JIT compilation on hardware accelerators to achieve substantial speedups over CPU-bound environments. Moreover, this enables Podracer-style architectures to further increase hardware utilization and training speed. We evaluate memory models on our environments using a Podracer variant of Q learning, and examine the results. Finally, we generate memory saliency maps, uncovering how memories propagate through policies. Our library is available at https://github.com/bolt-research/popgym_arcade.
Parallel Neural Computing for Scene Understanding from LiDAR Perception in Autonomous Racing
Autonomous driving in high-speed racing, as opposed to urban environments, presents significant challenges in scene understanding due to rapid changes in the track environment. Traditional sequential network approaches may struggle to meet the real-time knowledge and decision-making demands of an autonomous agent covering large displacements in a short time. This paper proposes a novel baseline architecture for developing sophisticated models capable of true hardware-enabled parallelism, achieving neural processing speeds that mirror the agent's high velocity. The proposed model (Parallel Perception Network (PPN)) consists of two independent neural networks, segmentation and reconstruction networks, running parallelly on separate accelerated hardware. The model takes raw 3D point cloud data from the LiDAR sensor as input and converts it into a 2D Bird's Eye View Map on both devices. Each network independently extracts its input features along space and time dimensions and produces outputs parallelly. The proposed method's model is trained on a system with two NVIDIA T4 GPUs, using a combination of loss functions, including edge preservation, and demonstrates a 2x speedup in model inference time compared to a sequential configuration. Implementation is available at: https://github.com/suwesh/Parallel-Perception-Network. Learned parameters of the trained networks are provided at: https://huggingface.co/suwesh/ParallelPerceptionNetwork.
Blockwise Parallel Decoding for Deep Autoregressive Models
Deep autoregressive sequence-to-sequence models have demonstrated impressive performance across a wide variety of tasks in recent years. While common architecture classes such as recurrent, convolutional, and self-attention networks make different trade-offs between the amount of computation needed per layer and the length of the critical path at training time, generation still remains an inherently sequential process. To overcome this limitation, we propose a novel blockwise parallel decoding scheme in which we make predictions for multiple time steps in parallel then back off to the longest prefix validated by a scoring model. This allows for substantial theoretical improvements in generation speed when applied to architectures that can process output sequences in parallel. We verify our approach empirically through a series of experiments using state-of-the-art self-attention models for machine translation and image super-resolution, achieving iteration reductions of up to 2x over a baseline greedy decoder with no loss in quality, or up to 7x in exchange for a slight decrease in performance. In terms of wall-clock time, our fastest models exhibit real-time speedups of up to 4x over standard greedy decoding.
ParallelSpec: Parallel Drafter for Efficient Speculative Decoding
Speculative decoding has proven to be an efficient solution to large language model (LLM) inference, where the small drafter predicts future tokens at a low cost, and the target model is leveraged to verify them in parallel. However, most existing works still draft tokens auto-regressively to maintain sequential dependency in language modeling, which we consider a huge computational burden in speculative decoding. We present ParallelSpec, an alternative to auto-regressive drafting strategies in state-of-the-art speculative decoding approaches. In contrast to auto-regressive drafting in the speculative stage, we train a parallel drafter to serve as an efficient speculative model. ParallelSpec learns to efficiently predict multiple future tokens in parallel using a single model, and it can be integrated into any speculative decoding framework that requires aligning the output distributions of the drafter and the target model with minimal training cost. Experimental results show that ParallelSpec accelerates baseline methods in latency up to 62% on text generation benchmarks from different domains, and it achieves 2.84X overall speedup on the Llama-2-13B model using third-party evaluation criteria.
Accelerating Transformer Inference for Translation via Parallel Decoding
Autoregressive decoding limits the efficiency of transformers for Machine Translation (MT). The community proposed specific network architectures and learning-based methods to solve this issue, which are expensive and require changes to the MT model, trading inference speed at the cost of the translation quality. In this paper, we propose to address the problem from the point of view of decoding algorithms, as a less explored but rather compelling direction. We propose to reframe the standard greedy autoregressive decoding of MT with a parallel formulation leveraging Jacobi and Gauss-Seidel fixed-point iteration methods for fast inference. This formulation allows to speed up existing models without training or modifications while retaining translation quality. We present three parallel decoding algorithms and test them on different languages and models showing how the parallelization introduces a speedup up to 38% w.r.t. the standard autoregressive decoding and nearly 2x when scaling the method on parallel resources. Finally, we introduce a decoding dependency graph visualizer (DDGviz) that let us see how the model has learned the conditional dependence between tokens and inspect the decoding procedure.
DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models
Diffusion models have achieved great success in synthesizing high-quality images. However, generating high-resolution images with diffusion models is still challenging due to the enormous computational costs, resulting in a prohibitive latency for interactive applications. In this paper, we propose DistriFusion to tackle this problem by leveraging parallelism across multiple GPUs. Our method splits the model input into multiple patches and assigns each patch to a GPU. However, na\"{\i}vely implementing such an algorithm breaks the interaction between patches and loses fidelity, while incorporating such an interaction will incur tremendous communication overhead. To overcome this dilemma, we observe the high similarity between the input from adjacent diffusion steps and propose displaced patch parallelism, which takes advantage of the sequential nature of the diffusion process by reusing the pre-computed feature maps from the previous timestep to provide context for the current step. Therefore, our method supports asynchronous communication, which can be pipelined by computation. Extensive experiments show that our method can be applied to recent Stable Diffusion XL with no quality degradation and achieve up to a 6.1times speedup on eight NVIDIA A100s compared to one. Our code is publicly available at https://github.com/mit-han-lab/distrifuser.
APE: Faster and Longer Context-Augmented Generation via Adaptive Parallel Encoding
Context-augmented generation (CAG) techniques, including RAG and ICL, require the efficient combination of multiple contexts to generate responses to user queries. Directly inputting these contexts as a sequence introduces a considerable computational burden by re-encoding the combined selection of contexts for every request. To address this, we explore the promising potential of parallel encoding to independently pre-compute and cache each context's KV states. This approach enables the direct loading of cached states during inference while accommodating more contexts through position reuse across contexts. However, due to misalignments in attention distribution, directly applying parallel encoding results in a significant performance drop. To enable effective and efficient CAG, we propose Adaptive Parallel Encoding (APE), which brings shared prefix, attention temperature, and scaling factor to align the distribution of parallel encoding with sequential encoding. Results on RAG and ICL tasks demonstrate that APE can preserve 98% and 93% sequential encoding performance using the same inputs while outperforming parallel encoding by 3.6% and 7.9%, respectively. It also scales to many-shot CAG, effectively encoding hundreds of contexts in parallel. Efficiency evaluation shows that APE can achieve an end-to-end 4.5times speedup by reducing 28times prefilling time for a 128K-length context.
Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference
The auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance. While recent research has investigated various speculative decoding techniques for multi-token generation, these efforts have primarily focused on improving processing speed such as throughput. Crucially, they often neglect other metrics essential for real-life deployments, such as memory consumption and training cost. To overcome these limitations, we propose a novel parallel prompt decoding that requires only 0.0002% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours. Inspired by the human natural language generation process, PPD approximates outputs generated at future timesteps in parallel by using multiple prompt tokens. This approach partially recovers the missing conditional dependency information necessary for multi-token generation, resulting in up to a 28% higher acceptance rate for long-range predictions. Furthermore, we present a hardware-aware dynamic sparse tree technique that adaptively optimizes this decoding scheme to fully leverage the computational capacities on different GPUs. Through extensive experiments across LLMs ranging from MobileLlama to Vicuna-13B on a wide range of benchmarks, our approach demonstrates up to 2.49times speedup and maintains a minimal runtime memory overhead of just 0.0004%. More importantly, our parallel prompt decoding can serve as an orthogonal optimization for synergistic integration with existing speculative decoding, showing up to 1.22times further speed improvement. Our code is available at https://github.com/hmarkc/parallel-prompt-decoding.
DreamPropeller: Supercharge Text-to-3D Generation with Parallel Sampling
Recent methods such as Score Distillation Sampling (SDS) and Variational Score Distillation (VSD) using 2D diffusion models for text-to-3D generation have demonstrated impressive generation quality. However, the long generation time of such algorithms significantly degrades the user experience. To tackle this problem, we propose DreamPropeller, a drop-in acceleration algorithm that can be wrapped around any existing text-to-3D generation pipeline based on score distillation. Our framework generalizes Picard iterations, a classical algorithm for parallel sampling an ODE path, and can account for non-ODE paths such as momentum-based gradient updates and changes in dimensions during the optimization process as in many cases of 3D generation. We show that our algorithm trades parallel compute for wallclock time and empirically achieves up to 4.7x speedup with a negligible drop in generation quality for all tested frameworks.
Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training
The success of Transformer models has pushed the deep learning model scale to billions of parameters. Due to the limited memory resource of a single GPU, However, the best practice for choosing the optimal parallel strategy is still lacking, since it requires domain expertise in both deep learning and parallel computing. The Colossal-AI system addressed the above challenge by introducing a unified interface to scale your sequential code of model training to distributed environments. It supports parallel training methods such as data, pipeline, tensor, and sequence parallelism, as well as heterogeneous training methods integrated with zero redundancy optimizer. Compared to the baseline system, Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.
Accelerating Feedforward Computation via Parallel Nonlinear Equation Solving
Feedforward computation, such as evaluating a neural network or sampling from an autoregressive model, is ubiquitous in machine learning. The sequential nature of feedforward computation, however, requires a strict order of execution and cannot be easily accelerated with parallel computing. To enable parallelization, we frame the task of feedforward computation as solving a system of nonlinear equations. We then propose to find the solution using a Jacobi or Gauss-Seidel fixed-point iteration method, as well as hybrid methods of both. Crucially, Jacobi updates operate independently on each equation and can be executed in parallel. Our method is guaranteed to give exactly the same values as the original feedforward computation with a reduced (or equal) number of parallelizable iterations, and hence reduced time given sufficient parallel computing power. Experimentally, we demonstrate the effectiveness of our approach in accelerating (i) backpropagation of RNNs, (ii) evaluation of DenseNets, and (iii) autoregressive sampling of MADE and PixelCNN++, with speedup factors between 2.1 and 26 under various settings.
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
Transformers have recently dominated the ASR field. Although able to yield good performance, they involve an autoregressive (AR) decoder to generate tokens one by one, which is computationally inefficient. To speed up inference, non-autoregressive (NAR) methods, e.g. single-step NAR, were designed, to enable parallel generation. However, due to an independence assumption within the output tokens, performance of single-step NAR is inferior to that of AR models, especially with a large-scale corpus. There are two challenges to improving single-step NAR: Firstly to accurately predict the number of output tokens and extract hidden variables; secondly, to enhance modeling of interdependence between output tokens. To tackle both challenges, we propose a fast and accurate parallel transformer, termed Paraformer. This utilizes a continuous integrate-and-fire based predictor to predict the number of tokens and generate hidden variables. A glancing language model (GLM) sampler then generates semantic embeddings to enhance the NAR decoder's ability to model context interdependence. Finally, we design a strategy to generate negative samples for minimum word error rate training to further improve performance. Experiments using the public AISHELL-1, AISHELL-2 benchmark, and an industrial-level 20,000 hour task demonstrate that the proposed Paraformer can attain comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.
Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters. We propose Smart Parallel Auto-Correct dEcoding (SPACE), an innovative approach designed for achieving lossless acceleration of LLMs. By integrating semi-autoregressive inference and speculative decoding capabilities, SPACE uniquely enables autoregressive LLMs to parallelize token generation and verification. This is realized through a specialized semi-autoregressive supervised fine-tuning process that equips existing LLMs with the ability to simultaneously predict multiple tokens. Additionally, an auto-correct decoding algorithm facilitates the simultaneous generation and verification of token sequences within a single model invocation. Through extensive experiments on a range of LLMs, SPACE has demonstrated inference speedup ranging from 2.7x-4.0x on HumanEval-X while maintaining output quality.
KV-Runahead: Scalable Causal LLM Inference by Parallel Key-Value Cache Generation
Large Language Model or LLM inference has two phases, the prompt (or prefill) phase to output the first token and the extension (or decoding) phase to the generate subsequent tokens. In this work, we propose an efficient parallelization scheme, KV-Runahead to accelerate the prompt phase. The key observation is that the extension phase generates tokens faster than the prompt phase because of key-value cache (KV-cache). Hence, KV-Runahead parallelizes the prompt phase by orchestrating multiple processes to populate the KV-cache and minimizes the time-to-first-token (TTFT). Dual-purposing the KV-cache scheme has two main benefits. Fist, since KV-cache is designed to leverage the causal attention map, we minimize computation and computation automatically. Second, since it already exists for the exten- sion phase, KV-Runahead is easy to implement. We further propose context-level load-balancing to handle uneven KV-cache generation (due to the causal attention) and to optimize TTFT. Compared with an existing parallelization scheme such as tensor or sequential parallelization where keys and values are locally generated and exchanged via all-gather collectives, our experimental results demonstrate that KV-Runahead can offer over 1.4x and 1.6x speedups for Llama 7B and Falcon 7B respectively.
Dimple: Discrete Diffusion Multimodal Large Language Model with Parallel Decoding
In this work, we propose Dimple, the first Discrete Diffusion Multimodal Large Language Model (DMLLM). We observe that training with a purely discrete diffusion approach leads to significant training instability, suboptimal performance, and severe length bias issues. To address these challenges, we design a novel training paradigm that combines an initial autoregressive phase with a subsequent diffusion phase. This approach yields the Dimple-7B model, trained on the same dataset and using a similar training pipeline as LLaVA-NEXT. Dimple-7B ultimately surpasses LLaVA-NEXT in performance by 3.9%, demonstrating that DMLLM can achieve performance comparable to that of autoregressive models. To improve inference efficiency, we propose a decoding strategy termed confident decoding, which dynamically adjusts the number of tokens generated at each step, significantly reducing the number of generation iterations. In autoregressive models, the number of forward iterations during generation equals the response length. With confident decoding, however, the number of iterations needed by Dimple is even only text{response length}{3}. We also re-implement the prefilling technique in autoregressive models and demonstrate that it does not significantly impact performance on most benchmark evaluations, while offering a speedup of 1.5x to 7x. Additionally, we explore Dimple's capability to precisely control its response using structure priors. These priors enable structured responses in a manner distinct from instruction-based or chain-of-thought prompting, and allow fine-grained control over response format and length, which is difficult to achieve in autoregressive models. Overall, this work validates the feasibility and advantages of DMLLM and enhances its inference efficiency and controllability. Code and models are available at https://github.com/yu-rp/Dimple.
Flover: A Temporal Fusion Framework for Efficient Autoregressive Model Parallel Inference
Autoregressive models, despite their commendable performance in a myriad of generative tasks, face challenges stemming from their inherently sequential structure. Inference on these models, by design, harnesses a temporal dependency, where the current token's probability distribution is conditioned on preceding tokens. This inherent characteristic severely impedes computational efficiency during inference as a typical inference request can require more than thousands of tokens, where generating each token requires a load of entire model weights, making the inference more memory-bound. The large overhead becomes profound in real deployment where requests arrive randomly, necessitating various generation lengths. Existing solutions, such as dynamic batching and concurrent instances, introduce significant response delays and bandwidth contention, falling short of achieving optimal latency and throughput. To address these shortcomings, we propose Flover -- a temporal fusion framework for efficiently inferring multiple requests in parallel. We deconstruct the general generation pipeline into pre-processing and token generation, and equip the framework with a dedicated work scheduler for fusing the generation process temporally across all requests. By orchestrating the token-level parallelism, Flover exhibits optimal hardware efficiency and significantly spares the system resources. By further employing a fast buffer reordering algorithm that allows memory eviction of finished tasks, it brings over 11x inference speedup on GPT and 16x on LLAMA compared to the cutting-edge solutions provided by NVIDIA FasterTransformer. Crucially, by leveraging the advanced tensor parallel technique, Flover proves efficacious across diverse computational landscapes, from single-GPU setups to distributed scenarios, thereby offering robust performance optimization that adapts to variable use cases.
Contrastive Loss is All You Need to Recover Analogies as Parallel Lines
While static word embedding models are known to represent linguistic analogies as parallel lines in high-dimensional space, the underlying mechanism as to why they result in such geometric structures remains obscure. We find that an elementary contrastive-style method employed over distributional information performs competitively with popular word embedding models on analogy recovery tasks, while achieving dramatic speedups in training time. Further, we demonstrate that a contrastive loss is sufficient to create these parallel structures in word embeddings, and establish a precise relationship between the co-occurrence statistics and the geometric structure of the resulting word embeddings.
Parallel Scaling Law for Language Models
It is commonly believed that scaling language models should commit a significant space or time cost, by increasing the parameters (parameter scaling) or output tokens (inference-time scaling). We introduce the third and more inference-efficient scaling paradigm: increasing the model's parallel computation during both training and inference time. We apply P diverse and learnable transformations to the input, execute forward passes of the model in parallel, and dynamically aggregate the P outputs. This method, namely parallel scaling (ParScale), scales parallel computation by reusing existing parameters and can be applied to any model structure, optimization procedure, data, or task. We theoretically propose a new scaling law and validate it through large-scale pre-training, which shows that a model with P parallel streams is similar to scaling the parameters by O(log P) while showing superior inference efficiency. For example, ParScale can use up to 22times less memory increase and 6times less latency increase compared to parameter scaling that achieves the same performance improvement. It can also recycle an off-the-shelf pre-trained model into a parallelly scaled one by post-training on a small amount of tokens, further reducing the training budget. The new scaling law we discovered potentially facilitates the deployment of more powerful models in low-resource scenarios, and provides an alternative perspective for the role of computation in machine learning.
DiffusionPipe: Training Large Diffusion Models with Efficient Pipelines
Diffusion models have emerged as dominant performers for image generation. To support training large diffusion models, this paper studies pipeline parallel training of diffusion models and proposes DiffusionPipe, a synchronous pipeline training system that advocates innovative pipeline bubble filling technique, catering to structural characteristics of diffusion models. State-of-the-art diffusion models typically include trainable (the backbone) and non-trainable (e.g., frozen input encoders) parts. We first unify optimal stage partitioning and pipeline scheduling of single and multiple backbones in representative diffusion models with a dynamic programming approach. We then propose to fill the computation of non-trainable model parts into idle periods of the pipeline training of the backbones by an efficient greedy algorithm, thus achieving high training throughput. Extensive experiments show that DiffusionPipe can achieve up to 1.41x speedup over pipeline parallel methods and 1.28x speedup over data parallel training on popular diffusion models.
Glancing Transformer for Non-Autoregressive Neural Machine Translation
Recent work on non-autoregressive neural machine translation (NAT) aims at improving the efficiency by parallel decoding without sacrificing the quality. However, existing NAT methods are either inferior to Transformer or require multiple decoding passes, leading to reduced speedup. We propose the Glancing Language Model (GLM), a method to learn word interdependency for single-pass parallel generation models. With GLM, we develop Glancing Transformer (GLAT) for machine translation. With only single-pass parallel decoding, GLAT is able to generate high-quality translation with 8-15 times speedup. Experiments on multiple WMT language directions show that GLAT outperforms all previous single pass non-autoregressive methods, and is nearly comparable to Transformer, reducing the gap to 0.25-0.9 BLEU points.
Lossless Acceleration for Seq2seq Generation with Aggressive Decoding
We study lossless acceleration for seq2seq generation with a novel decoding algorithm -- Aggressive Decoding. Unlike the previous efforts (e.g., non-autoregressive decoding) speeding up seq2seq generation at the cost of quality loss, our approach aims to yield the identical (or better) generation compared with autoregressive decoding but in a significant speedup, achieved by innovative cooperation of aggressive decoding and verification that are both efficient due to parallel computing. We propose two Aggressive Decoding paradigms for 2 kinds of seq2seq tasks: 1) For the seq2seq tasks whose inputs and outputs are highly similar (e.g., Grammatical Error Correction), we propose Input-guided Aggressive Decoding (IAD) that aggressively copies from the input sentence as drafted decoded tokens to verify in parallel; 2) For other general seq2seq tasks (e.g., Machine Translation), we propose Generalized Aggressive Decoding (GAD) that first employs an additional non-autoregressive decoding model for aggressive decoding and then verifies in parallel in the autoregressive manner. We test Aggressive Decoding on the most popular 6-layer Transformer model on GPU in multiple seq2seq tasks: 1) For IAD, we show that it can introduce a 7x-9x speedup for the Transformer in Grammatical Error Correction and Text Simplification tasks with the identical results as greedy decoding; 2) For GAD, we observe a 3x-5x speedup with the identical or even better quality in two important seq2seq tasks: Machine Translation and Abstractive Summarization. Moreover, Aggressive Decoding can benefit even more from stronger computing devices that are better at parallel computing. Given the lossless quality as well as significant and promising speedup, we believe Aggressive Decoding may potentially evolve into a de facto standard for efficient and lossless seq2seq generation in the near future.
Seed Diffusion: A Large-Scale Diffusion Language Model with High-Speed Inference
We present Seed Diffusion Preview, a large-scale language model based on discrete-state diffusion, offering remarkably fast inference speed. Thanks to non-sequential, parallel generation, discrete diffusion models provide a notable speedup to mitigate the inherent latency of token-by-token decoding, as demonstrated recently (e.g., Mercury Coder, Gemini Diffusion). Seed Diffusion Preview achieves an inference speed of 2,146 token/s over H20 GPUs while maintaining competitive performance across a sweep of standard code evaluation benchmarks, significantly faster than contemporary Mercury and Gemini Diffusion, establishing new state of the art on the speed-quality Pareto frontier for code models.
Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads
The inference process in Large Language Models (LLMs) is often limited due to the absence of parallelism in the auto-regressive decoding process, resulting in most operations being restricted by the memory bandwidth of accelerators. While methods such as speculative decoding have been suggested to address this issue, their implementation is impeded by the challenges associated with acquiring and maintaining a separate draft model. In this paper, we present Medusa, an efficient method that augments LLM inference by adding extra decoding heads to predict multiple subsequent tokens in parallel. Using a tree-based attention mechanism, Medusa constructs multiple candidate continuations and verifies them simultaneously in each decoding step. By leveraging parallel processing, Medusa introduces only minimal overhead in terms of single-step latency while substantially reducing the number of decoding steps required. We present two levels of fine-tuning procedures for Medusa to meet the needs of different use cases: Medusa-1: Medusa is directly fine-tuned on top of a frozen backbone LLM, enabling lossless inference acceleration. Medusa-2: Medusa is fine-tuned together with the backbone LLM, enabling better prediction accuracy of Medusa heads and higher speedup but needing a special training recipe that preserves the backbone model's capabilities. Moreover, we propose several extensions that improve or expand the utility of Medusa, including a self-distillation to handle situations where no training data is available and a typical acceptance scheme to boost the acceptance rate while maintaining generation quality. We evaluate Medusa on models of various sizes and training procedures. Our experiments demonstrate that Medusa-1 can achieve over 2.2x speedup without compromising generation quality, while Medusa-2 further improves the speedup to 2.3-3.6x.
Probabilistic Partitive Partitioning (PPP)
Clustering is a NP-hard problem. Thus, no optimal algorithm exists, heuristics are applied to cluster the data. Heuristics can be very resource-intensive, if not applied properly. For substantially large data sets computational efficiencies can be achieved by reducing the input space if a minimal loss of information can be achieved. Clustering algorithms, in general, face two common problems: 1) these converge to different settings with different initial conditions and; 2) the number of clusters has to be arbitrarily decided beforehand. This problem has become critical in the realm of big data. Recently, clustering algorithms have emerged which can speedup computations using parallel processing over the grid but face the aforementioned problems. Goals: Our goals are to find methods to cluster data which: 1) guarantee convergence to the same settings irrespective of the initial conditions; 2) eliminate the need to establish the number of clusters beforehand, and 3) can be applied to cluster large datasets. Methods: We introduce a method that combines probabilistic and combinatorial clustering methods to produce repeatable and compact clusters that are not sensitive to initial conditions. This method harnesses the power of k-means (a combinatorial clustering method) to cluster/partition very large dimensional datasets and uses the Gaussian Mixture Model (a probabilistic clustering method) to validate the k-means partitions. Results: We show that this method produces very compact clusters that are not sensitive to initial conditions. This method can be used to identify the most 'separable' set in a dataset which increases the 'clusterability' of a dataset. This method also eliminates the need to specify the number of clusters in advance.
AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising
Diffusion models have garnered significant interest from the community for their great generative ability across various applications. However, their typical multi-step sequential-denoising nature gives rise to high cumulative latency, thereby precluding the possibilities of parallel computation. To address this, we introduce AsyncDiff, a universal and plug-and-play acceleration scheme that enables model parallelism across multiple devices. Our approach divides the cumbersome noise prediction model into multiple components, assigning each to a different device. To break the dependency chain between these components, it transforms the conventional sequential denoising into an asynchronous process by exploiting the high similarity between hidden states in consecutive diffusion steps. Consequently, each component is facilitated to compute in parallel on separate devices. The proposed strategy significantly reduces inference latency while minimally impacting the generative quality. Specifically, for the Stable Diffusion v2.1, AsyncDiff achieves a 2.7x speedup with negligible degradation and a 4.0x speedup with only a slight reduction of 0.38 in CLIP Score, on four NVIDIA A5000 GPUs. Our experiments also demonstrate that AsyncDiff can be readily applied to video diffusion models with encouraging performances. The code is available at https://github.com/czg1225/AsyncDiff.
A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training
Mixture-of-Experts (MoE) is a neural network architecture that adds sparsely activated expert blocks to a base model, increasing the number of parameters without impacting computational costs. However, current distributed deep learning frameworks are limited in their ability to train high-quality MoE models with large base models. In this work, we present DeepSpeed-TED, a novel, three-dimensional, hybrid parallel algorithm that combines data, tensor, and expert parallelism to enable the training of MoE models with 4 to 8x larger base models than the current state-of-the-art. We also describe memory optimizations in the optimizer step, and communication optimizations that eliminate unnecessary data movement. We implement our approach in DeepSpeed and achieve speedups of 26% over a baseline (i.e. without our communication optimizations) when training a 40 billion parameter MoE model (6.7 billion base model with 16 experts) on 128 V100 GPUs.
MoETuner: Optimized Mixture of Expert Serving with Balanced Expert Placement and Token Routing
Mixture-of-Experts (MoE) model architecture has emerged as a promising solution for scaling transformer models efficiently, offering sparse activation that reduces computational costs while increasing model capacity. However, as MoE models scale, they need to be distributed across GPU devices, thus face critical performance bottlenecks due to their large memory footprint. Expert parallelism distributes experts across GPUs, however, faces key challenges including an unbalanced token routing and expert activation, resulting in communication tail latency and processing inefficiencies. While existing solutions address some of these issues, they fail to resolve the dual challenges of load imbalance and communication skew. The imbalance in token processing load across experts causes uneven processing times on different GPUs, while communication skew between GPUs leads to unbalanced inter-GPU data transfers. These factors degrade the performance of MoE models by increasing tail latency and reducing overall throughput. To address these limitations, we propose an Integer Linear Programming (ILP) formulation to optimize expert placement by jointly considering token load, communication, and computation costs. We exploit the property that there is a token routing dependency across layers, where tokens routed to a specific expert in one layer are likely to be routed to a limited set of experts in the subsequent layer. Our solution, MoETuner, offers an optimal expert-to-GPU assignment that minimizes inter-GPU token routing costs and balances token processing across devices, thereby reducing tail latency and end-to-end execution time. Experimental results demonstrate 9.3% and 17.5% of end-to-end speedups for single-node and multi-node inference respectively, showcasing the potential of our ILP-based optimization for offering expert parallel solutions for next-generation MoEs.
Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers
Transformer-based models have emerged as one of the most widely used architectures for natural language processing, natural language generation, and image generation. The size of the state-of-the-art models has increased steadily reaching billions of parameters. These huge models are memory hungry and incur significant inference latency even on cutting edge AI-accelerators, such as GPUs. Specifically, the time and memory complexity of the attention operation is quadratic in terms of the total context length, i.e., prompt and output tokens. Thus, several optimizations such as key-value tensor caching and FlashAttention computation have been proposed to deliver the low latency demands of applications relying on such large models. However, these techniques do not cater to the computationally distinct nature of different phases during inference. To that end, we propose LeanAttention, a scalable technique of computing self-attention for the token-generation phase (decode-phase) of decoder-only transformer models. LeanAttention enables scaling the attention mechanism implementation for the challenging case of long context lengths by re-designing the execution flow for the decode-phase. We identify that the associative property of online softmax can be treated as a reduction operation thus allowing us to parallelize the attention computation over these large context lengths. We extend the "stream-K" style reduction of tiled calculation to self-attention to enable parallel computation resulting in an average of 2.6x attention execution speedup over FlashAttention-2 and up to 8.33x speedup for 512k context lengths.
DynamicCity: Large-Scale LiDAR Generation from Dynamic Scenes
LiDAR scene generation has been developing rapidly recently. However, existing methods primarily focus on generating static and single-frame scenes, overlooking the inherently dynamic nature of real-world driving environments. In this work, we introduce DynamicCity, a novel 4D LiDAR generation framework capable of generating large-scale, high-quality LiDAR scenes that capture the temporal evolution of dynamic environments. DynamicCity mainly consists of two key models. 1) A VAE model for learning HexPlane as the compact 4D representation. Instead of using naive averaging operations, DynamicCity employs a novel Projection Module to effectively compress 4D LiDAR features into six 2D feature maps for HexPlane construction, which significantly enhances HexPlane fitting quality (up to 12.56 mIoU gain). Furthermore, we utilize an Expansion & Squeeze Strategy to reconstruct 3D feature volumes in parallel, which improves both network training efficiency and reconstruction accuracy than naively querying each 3D point (up to 7.05 mIoU gain, 2.06x training speedup, and 70.84% memory reduction). 2) A DiT-based diffusion model for HexPlane generation. To make HexPlane feasible for DiT generation, a Padded Rollout Operation is proposed to reorganize all six feature planes of the HexPlane as a squared 2D feature map. In particular, various conditions could be introduced in the diffusion or sampling process, supporting versatile 4D generation applications, such as trajectory- and command-driven generation, inpainting, and layout-conditioned generation. Extensive experiments on the CarlaSC and Waymo datasets demonstrate that DynamicCity significantly outperforms existing state-of-the-art 4D LiDAR generation methods across multiple metrics. The code will be released to facilitate future research.
Uncertainty quantification for industrial design using dictionaries of reduced order models
We consider the dictionary-based ROM-net (Reduced Order Model) framework [T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, Model order reduction assisted by deep neural networks (ROM-net), Advanced modeling and Simulation in Engineering Sciences 7 (16), 2020] and summarize the underlying methodologies and their recent improvements. The main contribution of this work is the application of the complete workflow to a real-life industrial model of an elastoviscoplastic high-pressure turbine blade subjected to thermal, centrifugal and pressure loadings, for the quantification of the uncertainty on dual quantities (such as the accumulated plastic strain and the stress tensor), generated by the uncertainty on the temperature loading field. The dictionary-based ROM-net computes predictions of dual quantities of interest for 1008 Monte Carlo draws of the temperature loading field in 2 hours and 48 minutes, which corresponds to a speedup greater than 600 with respect to a reference parallel solver using domain decomposition, with a relative error in the order of 2%. Another contribution of this work consists in the derivation of a meta-model to reconstruct the dual quantities of interest over the complete mesh from their values on the reduced integration points.
FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving
Transformers, driven by attention mechanisms, form the foundation of large language models (LLMs). As these models scale up, efficient GPU attention kernels become essential for high-throughput and low-latency inference. Diverse LLM applications demand flexible and high-performance attention solutions. We present FlashInfer: a customizable and efficient attention engine for LLM serving. FlashInfer tackles KV-cache storage heterogeneity using block-sparse format and composable formats to optimize memory access and reduce redundancy. It also offers a customizable attention template, enabling adaptation to various settings through Just-In-Time (JIT) compilation. Additionally, FlashInfer's load-balanced scheduling algorithm adjusts to dynamism of user requests while maintaining compatibility with CUDAGraph which requires static configuration. FlashInfer have been integrated into leading LLM serving frameworks like SGLang, vLLM and MLC-Engine. Comprehensive kernel-level and end-to-end evaluations demonstrate FlashInfer's ability to significantly boost kernel performance across diverse inference scenarios: compared to state-of-the-art LLM serving solutions, FlashInfer achieve 29-69% inter-token-latency reduction compared to compiler backends for LLM serving benchmark, 28-30% latency reduction for long-context inference, and 13-17% speedup for LLM serving with parallel generation.
Communication-Efficient Diffusion Denoising Parallelization via Reuse-then-Predict Mechanism
Diffusion models have emerged as a powerful class of generative models across various modalities, including image, video, and audio synthesis. However, their deployment is often limited by significant inference latency, primarily due to the inherently sequential nature of the denoising process. While existing parallelization strategies attempt to accelerate inference by distributing computation across multiple devices, they typically incur high communication overhead, hindering deployment on commercial hardware. To address this challenge, we propose ParaStep, a novel parallelization method based on a reuse-then-predict mechanism that parallelizes diffusion inference by exploiting similarity between adjacent denoising steps. Unlike prior approaches that rely on layer-wise or stage-wise communication, ParaStep employs lightweight, step-wise communication, substantially reducing overhead. ParaStep achieves end-to-end speedups of up to 3.88times on SVD, 2.43times on CogVideoX-2b, and 6.56times on AudioLDM2-large, while maintaining generation quality. These results highlight ParaStep as a scalable and communication-efficient solution for accelerating diffusion inference, particularly in bandwidth-constrained environments.
Parallelizing non-linear sequential models over the sequence length
Sequential models, such as Recurrent Neural Networks and Neural Ordinary Differential Equations, have long suffered from slow training due to their inherent sequential nature. For many years this bottleneck has persisted, as many thought sequential models could not be parallelized. We challenge this long-held belief with our parallel algorithm that accelerates GPU evaluation of sequential models by up to 3 orders of magnitude faster without compromising output accuracy. The algorithm does not need any special structure in the sequential models' architecture, making it applicable to a wide range of architectures. Using our method, training sequential models can be more than 10 times faster than the common sequential method without any meaningful difference in the training results. Leveraging this accelerated training, we discovered the efficacy of the Gated Recurrent Unit in a long time series classification problem with 17k time samples. By overcoming the training bottleneck, our work serves as the first step to unlock the potential of non-linear sequential models for long sequence problems.
Parallel Q-Learning: Scaling Off-policy Reinforcement Learning under Massively Parallel Simulation
Reinforcement learning is time-consuming for complex tasks due to the need for large amounts of training data. Recent advances in GPU-based simulation, such as Isaac Gym, have sped up data collection thousands of times on a commodity GPU. Most prior works used on-policy methods like PPO due to their simplicity and ease of scaling. Off-policy methods are more data efficient but challenging to scale, resulting in a longer wall-clock training time. This paper presents a Parallel Q-Learning (PQL) scheme that outperforms PPO in wall-clock time while maintaining superior sample efficiency of off-policy learning. PQL achieves this by parallelizing data collection, policy learning, and value learning. Different from prior works on distributed off-policy learning, such as Apex, our scheme is designed specifically for massively parallel GPU-based simulation and optimized to work on a single workstation. In experiments, we demonstrate that Q-learning can be scaled to tens of thousands of parallel environments and investigate important factors affecting learning speed. The code is available at https://github.com/Improbable-AI/pql.
Locality-aware Parallel Decoding for Efficient Autoregressive Image Generation
We present Locality-aware Parallel Decoding (LPD) to accelerate autoregressive image generation. Traditional autoregressive image generation relies on next-patch prediction, a memory-bound process that leads to high latency. Existing works have tried to parallelize next-patch prediction by shifting to multi-patch prediction to accelerate the process, but only achieved limited parallelization. To achieve high parallelization while maintaining generation quality, we introduce two key techniques: (1) Flexible Parallelized Autoregressive Modeling, a novel architecture that enables arbitrary generation ordering and degrees of parallelization. It uses learnable position query tokens to guide generation at target positions while ensuring mutual visibility among concurrently generated tokens for consistent parallel decoding. (2) Locality-aware Generation Ordering, a novel schedule that forms groups to minimize intra-group dependencies and maximize contextual support, enhancing generation quality. With these designs, we reduce the generation steps from 256 to 20 (256times256 res.) and 1024 to 48 (512times512 res.) without compromising quality on the ImageNet class-conditional generation, and achieving at least 3.4times lower latency than previous parallelized autoregressive models.
A Quadratic Synchronization Rule for Distributed Deep Learning
In distributed deep learning with data parallelism, synchronizing gradients at each training step can cause a huge communication overhead, especially when many nodes work together to train large models. Local gradient methods, such as Local SGD, address this issue by allowing workers to compute locally for H steps without synchronizing with others, hence reducing communication frequency. While H has been viewed as a hyperparameter to trade optimization efficiency for communication cost, recent research indicates that setting a proper H value can lead to generalization improvement. Yet, selecting a proper H is elusive. This work proposes a theory-grounded method for determining H, named the Quadratic Synchronization Rule (QSR), which recommends dynamically setting H in proportion to 1{eta^2} as the learning rate eta decays over time. Extensive ImageNet experiments on ResNet and ViT show that local gradient methods with QSR consistently improve the test accuracy over other synchronization strategies. Compared with the standard data parallel training, QSR enables Local AdamW on ViT-B to cut the training time on 16 or 64 GPUs down from 26.7 to 20.2 hours or from 8.6 to 5.5 hours and, at the same time, achieves 1.16% or 0.84% higher top-1 validation accuracy.
Partially Conditioned Patch Parallelism for Accelerated Diffusion Model Inference
Diffusion models have exhibited exciting capabilities in generating images and are also very promising for video creation. However, the inference speed of diffusion models is limited by the slow sampling process, restricting its use cases. The sequential denoising steps required for generating a single sample could take tens or hundreds of iterations and thus have become a significant bottleneck. This limitation is more salient for applications that are interactive in nature or require small latency. To address this challenge, we propose Partially Conditioned Patch Parallelism (PCPP) to accelerate the inference of high-resolution diffusion models. Using the fact that the difference between the images in adjacent diffusion steps is nearly zero, Patch Parallelism (PP) leverages multiple GPUs communicating asynchronously to compute patches of an image in multiple computing devices based on the entire image (all patches) in the previous diffusion step. PCPP develops PP to reduce computation in inference by conditioning only on parts of the neighboring patches in each diffusion step, which also decreases communication among computing devices. As a result, PCPP decreases the communication cost by around 70% compared to DistriFusion (the state of the art implementation of PP) and achieves 2.36sim 8.02times inference speed-up using 4sim 8 GPUs compared to 2.32sim 6.71times achieved by DistriFusion depending on the computing device configuration and resolution of generation at the cost of a possible decrease in image quality. PCPP demonstrates the potential to strike a favorable trade-off, enabling high-quality image generation with substantially reduced latency.
Parallel Sampling of Diffusion Models
Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.
A dynamic parallel method for performance optimization on hybrid CPUs
The AIPC concept is gaining popularity, and more and more hybrid CPUs will be running AI models on client devices. However, the current AI inference framework overlooks the imbalanced hardware capability of hybrid CPUs, leading to low inference performance. To address this issue, we have introduced a dynamic parallel method for hybrid CPUs, which significantly increases LLM inference performance by balancing the workload for each core of a hybrid CPU before the parallel work starts. This method has enabled Neural Speed to achieve more than 90% (on average) of memory bandwidth on two hybrid Intel CPUs.
Non-deep Networks
Depth is the hallmark of deep neural networks. But more depth means more sequential computation and higher latency. This begs the question -- is it possible to build high-performing "non-deep" neural networks? We show that it is. To do so, we use parallel subnetworks instead of stacking one layer after another. This helps effectively reduce depth while maintaining high performance. By utilizing parallel substructures, we show, for the first time, that a network with a depth of just 12 can achieve top-1 accuracy over 80% on ImageNet, 96% on CIFAR10, and 81% on CIFAR100. We also show that a network with a low-depth (12) backbone can achieve an AP of 48% on MS-COCO. We analyze the scaling rules for our design and show how to increase performance without changing the network's depth. Finally, we provide a proof of concept for how non-deep networks could be used to build low-latency recognition systems. Code is available at https://github.com/imankgoyal/NonDeepNetworks.
OptEx: Expediting First-Order Optimization with Approximately Parallelized Iterations
First-order optimization (FOO) algorithms are pivotal in numerous computational domains such as machine learning and signal denoising. However, their application to complex tasks like neural network training often entails significant inefficiencies due to the need for many sequential iterations for convergence. In response, we introduce first-order optimization expedited with approximately parallelized iterations (OptEx), the first framework that enhances the efficiency of FOO by leveraging parallel computing to mitigate its iterative bottleneck. OptEx employs kernelized gradient estimation to make use of gradient history for future gradient prediction, enabling parallelization of iterations -- a strategy once considered impractical because of the inherent iterative dependency in FOO. We provide theoretical guarantees for the reliability of our kernelized gradient estimation and the iteration complexity of SGD-based OptEx, confirming that estimation errors diminish to zero as historical gradients accumulate and that SGD-based OptEx enjoys an effective acceleration rate of Omega(N) over standard SGD given parallelism of N. We also use extensive empirical studies, including synthetic functions, reinforcement learning tasks, and neural network training across various datasets, to underscore the substantial efficiency improvements achieved by OptEx.
CodeMonkeys: Scaling Test-Time Compute for Software Engineering
Scaling test-time compute is a promising axis for improving LLM capabilities. However, test-time compute can be scaled in a variety of ways, and effectively combining different approaches remains an active area of research. Here, we explore this problem in the context of solving real-world GitHub issues from the SWE-bench dataset. Our system, named CodeMonkeys, allows models to iteratively edit a codebase by jointly generating and running a testing script alongside their draft edit. We sample many of these multi-turn trajectories for every issue to generate a collection of candidate edits. This approach lets us scale "serial" test-time compute by increasing the number of iterations per trajectory and "parallel" test-time compute by increasing the number of trajectories per problem. With parallel scaling, we can amortize up-front costs across multiple downstream samples, allowing us to identify relevant codebase context using the simple method of letting an LLM read every file. In order to select between candidate edits, we combine voting using model-generated tests with a final multi-turn trajectory dedicated to selection. Overall, CodeMonkeys resolves 57.4% of issues from SWE-bench Verified using a budget of approximately 2300 USD. Our selection method can also be used to combine candidates from different sources. Selecting over an ensemble of edits from existing top SWE-bench Verified submissions obtains a score of 66.2% and outperforms the best member of the ensemble on its own. We fully release our code and data at https://scalingintelligence.stanford.edu/pubs/codemonkeys.
Revisiting the Test-Time Scaling of o1-like Models: Do they Truly Possess Test-Time Scaling Capabilities?
The advent of test-time scaling in large language models (LLMs), exemplified by OpenAI's o1 series, has advanced reasoning capabilities by scaling computational resource allocation during inference. While successors like QwQ, Deepseek-R1 (R1) and LIMO replicate these advancements, whether these models truly possess test-time scaling capabilities remains underexplored. This study found that longer CoTs of these o1-like models do not consistently enhance accuracy; in fact, correct solutions are often shorter than incorrect ones for the same questions. Further investigation shows this phenomenon is closely related to models' self-revision capabilities - longer CoTs contain more self-revisions, which often lead to performance degradation. We then compare sequential and parallel scaling strategies on QwQ, R1 and LIMO, finding that parallel scaling achieves better coverage and scalability. Based on these insights, we propose Shortest Majority Vote, a method that combines parallel scaling strategies with CoT length characteristics, significantly improving models' test-time scalability compared to conventional majority voting approaches.
Dynamic backup workers for parallel machine learning
The most popular framework for distributed training of machine learning models is the (synchronous) parameter server (PS). This paradigm consists of n workers, which iteratively compute updates of the model parameters, and a stateful PS, which waits and aggregates all updates to generate a new estimate of model parameters and sends it back to the workers for a new iteration. Transient computation slowdowns or transmission delays can intolerably lengthen the time of each iteration. An efficient way to mitigate this problem is to let the PS wait only for the fastest n-b updates, before generating the new parameters. The slowest b workers are called backup workers. The optimal number b of backup workers depends on the cluster configuration and workload, but also (as we show in this paper) on the hyper-parameters of the learning algorithm and the current stage of the training. We propose DBW, an algorithm that dynamically decides the number of backup workers during the training process to maximize the convergence speed at each iteration. Our experiments show that DBW 1) removes the necessity to tune b by preliminary time-consuming experiments, and 2) makes the training up to a factor 3 faster than the optimal static configuration.
Boosting Large-scale Parallel Training Efficiency with C4: A Communication-Driven Approach
The emergence of Large Language Models (LLMs) has necessitated the adoption of parallel training techniques, involving the deployment of thousands of GPUs to train a single model. Unfortunately, we have found that the efficiency of current parallel training is often suboptimal, largely due to the following two main issues. Firstly, hardware failures are inevitable, leading to interruptions in the training tasks. The inability to quickly identify the faulty components results in a substantial waste of GPU resources. Secondly, since GPUs must wait for parameter synchronization to complete before proceeding to the next round of computation, network congestions can greatly increase the waiting time for GPUs. To address these challenges, this paper introduces a communication-driven solution, namely the C4. The key insights of C4 are two folds. First, in parallel training, collective communication exhibits periodic and homogeneous characteristics, so any anomalies are certainly due to some form of hardware malfunction. By leveraging this feature, C4 can rapidly identify the faulty components, swiftly isolate the anomaly, and restart the task, thereby avoiding resource wastage caused by delays in anomaly detection. Second, the predictable communication model of collective communication, involving few large flows, allows C4 to efficiently execute traffic planning, substantially reducing network congestion. C4 has been extensively implemented across our production systems, cutting error-induced overhead by roughly 30% and enhancing runtime performance by about 15% for certain applications with moderate communication costs.
Parallelized Autoregressive Visual Generation
Autoregressive models have emerged as a powerful approach for visual generation but suffer from slow inference speed due to their sequential token-by-token prediction process. In this paper, we propose a simple yet effective approach for parallelized autoregressive visual generation that improves generation efficiency while preserving the advantages of autoregressive modeling. Our key insight is that parallel generation depends on visual token dependencies-tokens with weak dependencies can be generated in parallel, while strongly dependent adjacent tokens are difficult to generate together, as their independent sampling may lead to inconsistencies. Based on this observation, we develop a parallel generation strategy that generates distant tokens with weak dependencies in parallel while maintaining sequential generation for strongly dependent local tokens. Our approach can be seamlessly integrated into standard autoregressive models without modifying the architecture or tokenizer. Experiments on ImageNet and UCF-101 demonstrate that our method achieves a 3.6x speedup with comparable quality and up to 9.5x speedup with minimal quality degradation across both image and video generation tasks. We hope this work will inspire future research in efficient visual generation and unified autoregressive modeling. Project page: https://epiphqny.github.io/PAR-project.
PyTorch Distributed: Experiences on Accelerating Data Parallel Training
This paper presents the design, implementation, and evaluation of the PyTorch distributed data parallel module. PyTorch is a widely-adopted scientific computing package used in deep learning research and applications. Recent advances in deep learning argue for the value of large datasets and large models, which necessitates the ability to scale out model training to more computational resources. Data parallelism has emerged as a popular solution for distributed training thanks to its straightforward principle and broad applicability. In general, the technique of distributed data parallelism replicates the model on every computational resource to generate gradients independently and then communicates those gradients at each iteration to keep model replicas consistent. Despite the conceptual simplicity of the technique, the subtle dependencies between computation and communication make it non-trivial to optimize the distributed training efficiency. As of v1.5, PyTorch natively provides several techniques to accelerate distributed data parallel, including bucketing gradients, overlapping computation with communication, and skipping gradient synchronization. Evaluations show that, when configured appropriately, the PyTorch distributed data parallel module attains near-linear scalability using 256 GPUs.
8-Bit Approximations for Parallelism in Deep Learning
The creation of practical deep learning data-products often requires parallelization across processors and computers to make deep learning feasible on large data sets, but bottlenecks in communication bandwidth make it difficult to attain good speedups through parallelism. Here we develop and test 8-bit approximation algorithms which make better use of the available bandwidth by compressing 32-bit gradients and nonlinear activations to 8-bit approximations. We show that these approximations do not decrease predictive performance on MNIST, CIFAR10, and ImageNet for both model and data parallelism and provide a data transfer speedup of 2x relative to 32-bit parallelism. We build a predictive model for speedups based on our experimental data, verify its validity on known speedup data, and show that we can obtain a speedup of 50x and more on a system of 96 GPUs compared to a speedup of 23x for 32-bit. We compare our data types with other methods and show that 8-bit approximations achieve state-of-the-art speedups for model parallelism. Thus 8-bit approximation is an efficient method to parallelize convolutional networks on very large systems of GPUs.
Adaptive Braking for Mitigating Gradient Delay
Neural network training is commonly accelerated by using multiple synchronized workers to compute gradient updates in parallel. Asynchronous methods remove synchronization overheads and improve hardware utilization at the cost of introducing gradient delay, which impedes optimization and can lead to lower final model performance. We introduce Adaptive Braking (AB), a modification for momentum-based optimizers that mitigates the effects of gradient delay. AB dynamically scales the gradient based on the alignment of the gradient and the velocity. This can dampen oscillations along high curvature directions of the loss surface, stabilizing and accelerating asynchronous training. We show that applying AB on top of SGD with momentum enables training ResNets on CIFAR-10 and ImageNet-1k with delays D geq 32 update steps with minimal drop in final test accuracy.
Multiverse: Your Language Models Secretly Decide How to Parallelize and Merge Generation
Autoregressive Large Language Models (AR-LLMs) frequently exhibit implicit parallelism in sequential generation. Inspired by this, we introduce Multiverse, a new generative model that enables natively parallel generation. Multiverse internalizes a MapReduce paradigm, generating automatically through three stages: (i) a Map stage for adaptive task decomposition, (ii) a Process stage for parallel subtask execution, and (iii) a Reduce stage for lossless result synthesis. Next, we build a real-world Multiverse reasoning model with co-design of data, algorithm, and system, enabling rapid and seamless transfer from frontier AR-LLMs. Starting from sequential reasoning chains, we create Multiverse 1K by converting them into structured training data using an automated LLM-assisted pipeline, avoiding costly human annotations. Algorithmically, we design Multiverse Attention to separate parallel reasoning steps while keeping compatibility with causal attention for efficient training. Systematically, we implement Multiverse Engine to enable parallel inference. It features a dedicated scheduler that dynamically switches between sequential and parallel generation, triggered directly by the model. After a 3-hour fine-tuning with 1K examples, our Multiverse-32B stands as the only open-sourced non-AR model achieving performance on par with leading AR-LLMs of the same scale, evidenced by AIME24 & 25 scores of 54% and 46%, respectively. Moreover, our budget control experiments show that Multiverse-32B exhibits superior scaling, outperforming AR-LLMs by 1.87% on average using the same context length. Such scaling further leads to practical efficiency gain, achieving up to 2x speedup across varying batch sizes. We have open-sourced the entire Multiverse ecosystem, including data, model weights, engine, supporting tools, as well as complete data curation prompts and detailed training and evaluation recipes.
Adaptive Termination for Multi-round Parallel Reasoning: An Universal Semantic Entropy-Guided Framework
Recent advances in large language models (LLMs) have accelerated progress toward artificial general intelligence, with inference-time scaling emerging as a key technique. Contemporary approaches leverage either sequential reasoning (iteratively extending chains of thought) or parallel reasoning (generating multiple solutions simultaneously) to scale inference. However, both paradigms face fundamental limitations: sequential scaling typically relies on arbitrary token budgets for termination, leading to inefficiency or premature cutoff; while parallel scaling often lacks coordination among parallel branches and requires intrusive fine-tuning to perform effectively. In light of these challenges, we aim to design a flexible test-time collaborative inference framework that exploits the complementary strengths of both sequential and parallel reasoning paradigms. Towards this goal, the core challenge lies in developing an efficient and accurate intrinsic quality metric to assess model responses during collaborative inference, enabling dynamic control and early termination of the reasoning trace. To address this challenge, we introduce semantic entropy (SE), which quantifies the semantic diversity of parallel model responses and serves as a robust indicator of reasoning quality due to its strong negative correlation with accuracy...
EnvPool: A Highly Parallel Reinforcement Learning Environment Execution Engine
There has been significant progress in developing reinforcement learning (RL) training systems. Past works such as IMPALA, Apex, Seed RL, Sample Factory, and others, aim to improve the system's overall throughput. In this paper, we aim to address a common bottleneck in the RL training system, i.e., parallel environment execution, which is often the slowest part of the whole system but receives little attention. With a curated design for paralleling RL environments, we have improved the RL environment simulation speed across different hardware setups, ranging from a laptop and a modest workstation, to a high-end machine such as NVIDIA DGX-A100. On a high-end machine, EnvPool achieves one million frames per second for the environment execution on Atari environments and three million frames per second on MuJoCo environments. When running EnvPool on a laptop, the speed is 2.8x that of the Python subprocess. Moreover, great compatibility with existing RL training libraries has been demonstrated in the open-sourced community, including CleanRL, rl_games, DeepMind Acme, etc. Finally, EnvPool allows researchers to iterate their ideas at a much faster pace and has great potential to become the de facto RL environment execution engine. Example runs show that it only takes five minutes to train agents to play Atari Pong and MuJoCo Ant on a laptop. EnvPool is open-sourced at https://github.com/sail-sg/envpool.
DADAO: Decoupled Accelerated Decentralized Asynchronous Optimization
This work introduces DADAO: the first decentralized, accelerated, asynchronous, primal, first-order algorithm to minimize a sum of L-smooth and mu-strongly convex functions distributed over a given network of size n. Our key insight is based on modeling the local gradient updates and gossip communication procedures with separate independent Poisson Point Processes. This allows us to decouple the computation and communication steps, which can be run in parallel, while making the whole approach completely asynchronous, leading to communication acceleration compared to synchronous approaches. Our new method employs primal gradients and does not use a multi-consensus inner loop nor other ad-hoc mechanisms such as Error Feedback, Gradient Tracking, or a Proximal operator. By relating the inverse of the smallest positive eigenvalue of the Laplacian matrix chi_1 and the maximal resistance chi_2leq chi_1 of the graph to a sufficient minimal communication rate between the nodes of the network, we show that our algorithm requires O(nfrac{L{mu}}log(1{epsilon})) local gradients and only O(nchi_1chi_2frac{L{mu}}log(1{epsilon})) communications to reach a precision epsilon, up to logarithmic terms. Thus, we simultaneously obtain an accelerated rate for both computations and communications, leading to an improvement over state-of-the-art works, our simulations further validating the strength of our relatively unconstrained method. We also propose a SDP relaxation to find the optimal gossip rate of each edge minimizing the total number of communications for a given graph, resulting in faster convergence compared to standard approaches relying on uniform communication weights. Our source code is released on a public repository.
Eager Updates For Overlapped Communication and Computation in DiLoCo
Distributed optimization methods such as DiLoCo have been shown to be effective in training very large models across multiple distributed workers, such as datacenters. These methods split updates into two parts: an inner optimization phase, where the workers independently execute multiple optimization steps on their own local data, and an outer optimization step, where the inner updates are synchronized. While such approaches require orders of magnitude less communication than standard data-parallel training, in settings where the workers are datacenters, even the limited communication requirements of these approaches can still cause significant slow downs due to the blocking necessary at each outer optimization step. In this paper, we investigate techniques to mitigate this issue by overlapping communication with computation in a manner that allows the outer optimization step to fully overlap with the inner optimization phase. We show that a particular variant, dubbed eager updates, provides competitive performance with standard DiLoCo in settings with low bandwidth between workers.
PaSS: Parallel Speculative Sampling
Scaling the size of language models to tens of billions of parameters has led to impressive performance on a wide range of tasks. At generation, these models are used auto-regressively, requiring a forward pass for each generated token, and thus reading the full set of parameters from memory. This memory access forms the primary bottleneck for generation and it worsens as the model size increases. Moreover, executing a forward pass for multiple tokens in parallel often takes nearly the same time as it does for just one token. These two observations lead to the development of speculative sampling, where a second smaller model is used to draft a few tokens, that are then validated or rejected using a single forward pass of the large model. Unfortunately, this method requires two models that share the same tokenizer and thus limits its adoption. As an alternative, we propose to use parallel decoding as a way to draft multiple tokens from a single model with no computational cost, nor the need for a second model. Our approach only requires an additional input token that marks the words that will be generated simultaneously. We show promising performance (up to 30% speed-up) while requiring only as few as O(d_{emb}) additional parameters.
Optimizing Distributed Training on Frontier for Large Language Models
Large language models (LLMs) have demonstrated remarkable success as foundational models, benefiting various downstream applications through fine-tuning. Recent studies on loss scaling have demonstrated the superior performance of larger LLMs compared to their smaller counterparts. Nevertheless, training LLMs with billions of parameters poses significant challenges and requires considerable computational resources. For example, training a one trillion parameter GPT-style model on 20 trillion tokens requires a staggering 120 million exaflops of computation. This research explores efficient distributed training strategies to extract this computation from Frontier, the world's first exascale supercomputer dedicated to open science. We enable and investigate various model and data parallel training techniques, such as tensor parallelism, pipeline parallelism, and sharded data parallelism, to facilitate training a trillion-parameter model on Frontier. We empirically assess these techniques and their associated parameters to determine their impact on memory footprint, communication latency, and GPU's computational efficiency. We analyze the complex interplay among these techniques and find a strategy to combine them to achieve high throughput through hyperparameter tuning. We have identified efficient strategies for training large LLMs of varying sizes through empirical analysis and hyperparameter tuning. For 22 Billion, 175 Billion, and 1 Trillion parameters, we achieved GPU throughputs of 38.38%, 36.14%, and 31.96%, respectively. For the training of the 175 Billion parameter model and the 1 Trillion parameter model, we achieved 100% weak scaling efficiency on 1024 and 3072 MI250X GPUs, respectively. We also achieved strong scaling efficiencies of 89% and 87% for these two models.
Towards Fast Inference: Exploring and Improving Blockwise Parallel Drafts
Despite the remarkable strides made by autoregressive language models, their potential is often hampered by the slow inference speeds inherent in sequential token generation. Blockwise parallel decoding (BPD) was proposed by Stern et al. (2018) as a way to improve inference speed of language models. In this paper, we make two contributions to understanding and improving BPD drafts. We first offer an analysis of the token distributions produced by the BPD prediction heads. Secondly, we use this analysis to inform algorithms to improve BPD inference speed by refining the BPD drafts using small n-gram or neural language models. We empirically show that these refined BPD drafts yield a higher average verified prefix length across tasks.
Parallelizing Optical Flow Estimation on an Ultra-Low Power RISC-V Cluster for Nano-UAV Navigation
Optical flow estimation is crucial for autonomous navigation and localization of unmanned aerial vehicles (UAV). On micro and nano UAVs, real-time calculation of the optical flow is run on low power and resource-constrained microcontroller units (MCUs). Thus, lightweight algorithms for optical flow have been proposed targeting real-time execution on traditional single-core MCUs. This paper introduces an efficient parallelization strategy for optical flow computation targeting new-generation multicore low power RISC-V based microcontroller units. Our approach enables higher frame rates at lower clock speeds. It has been implemented and evaluated on the eight-core cluster of a commercial octa-core MCU (GAP8) reaching a parallelization speedup factor of 7.21 allowing for a frame rate of 500 frames per second when running on a 50 MHz clock frequency. The proposed parallel algorithm significantly boosts the camera frame rate on micro unmanned aerial vehicles, which enables higher flight speeds: the maximum flight speed can be doubled, while using less than a third of the clock frequency of previous single-core implementations.
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
We study gradient compression methods to alleviate the communication bottleneck in data-parallel distributed optimization. Despite the significant attention received, current compression schemes either do not scale well or fail to achieve the target test accuracy. We propose a new low-rank gradient compressor based on power iteration that can i) compress gradients rapidly, ii) efficiently aggregate the compressed gradients using all-reduce, and iii) achieve test performance on par with SGD. The proposed algorithm is the only method evaluated that achieves consistent wall-clock speedups when benchmarked against regular SGD with an optimized communication backend. We demonstrate reduced training times for convolutional networks as well as LSTMs on common datasets. Our code is available at https://github.com/epfml/powersgd.
Feature Selection with Evolving, Fast and Slow Using Two Parallel Genetic Algorithms
Feature selection is one of the most challenging issues in machine learning, especially while working with high dimensional data. In this paper, we address the problem of feature selection and propose a new approach called Evolving Fast and Slow. This new approach is based on using two parallel genetic algorithms having high and low mutation rates, respectively. Evolving Fast and Slow requires a new parallel architecture combining an automatic system that evolves fast and an effortful system that evolves slow. With this architecture, exploration and exploitation can be done simultaneously and in unison. Evolving fast, with high mutation rate, can be useful to explore new unknown places in the search space with long jumps; and Evolving Slow, with low mutation rate, can be useful to exploit previously known places in the search space with short movements. Our experiments show that Evolving Fast and Slow achieves very good results in terms of both accuracy and feature elimination.
Mutual-Supervised Learning for Sequential-to-Parallel Code Translation
The rise of GPU-based high-performance computing (HPC) has driven the widespread adoption of parallel programming models such as CUDA. Yet, the inherent complexity of parallel programming creates a demand for the automated sequential-to-parallel approaches. However, data scarcity poses a significant challenge for machine learning-based sequential-to-parallel code translation. Although recent back-translation methods show promise, they still fail to ensure functional equivalence in the translated code. In this paper, we propose a novel Mutual-Supervised Learning (MSL) framework for sequential-to-parallel code translation to address the functional equivalence issue. MSL consists of two models, a Translator and a Tester. Through an iterative loop consisting of Co-verify and Co-evolve steps, the Translator and the Tester mutually generate data for each other and improve collectively. The Tester generates unit tests to verify and filter functionally equivalent translated code, thereby evolving the Translator, while the Translator generates translated code as augmented input to evolve the Tester. Experimental results demonstrate that MuSL significantly enhances the performance of the base model: when applied to Qwen2.5-Coder, it not only improves Pass@1 by up to 28.91% and boosts Tester performance by 68.90%, but also outperforms the previous state-of-the-art method CodeRosetta by 1.56 and 6.92 in BLEU and CodeBLEU scores, while achieving performance comparable to DeepSeek-R1 and GPT-4.1. Our code is available at https://github.com/kcxain/musl.
Benchmarking the Processing of Aircraft Tracks with Triples Mode and Self-Scheduling
As unmanned aircraft systems (UASs) continue to integrate into the U.S. National Airspace System (NAS), there is a need to quantify the risk of airborne collisions between unmanned and manned aircraft to support regulation and standards development. Developing and certifying collision avoidance systems often rely on the extensive use of Monte Carlo collision risk analysis simulations using probabilistic models of aircraft flight. To train these models, high performance computing resources are required. We've prototyped a high performance computing workflow designed and deployed on the Lincoln Laboratory Supercomputing Center to process billions of observations of aircraft. However, the prototype has various computational and storage bottlenecks that limited rapid or more comprehensive analyses and models. In response, we have developed a novel workflow to take advantage of various job launch and task distribution technologies to improve performance. The workflow was benchmarked using two datasets of observations of aircraft, including a new dataset focused on the environment around aerodromes. Optimizing how the workflow was parallelized drastically reduced the execution time from weeks to days.
Adaptive Blockwise Task-interleaved Pipeline Parallelism
Efficient distributed training serves as a powerful catalyst and an essential foundation for the development of large-scale neural networks. In distributed training scenarios, various pipeline parallelism methods are cleverly designed and widely employed. In this paper, we propose ZeroPP, a highly efficient and flexible pipeline parallelism method that trades off pipeline bubbles, memory usage, and communication through adaptive scheduling units. ZeroPP achieves minimal pipeline bubbles by carefully staggering the computation tasks of forward, input gradient, and weight gradient within a scheduling unit. Additionally, ZeroPP optimizes the combination of pipeline parallelism and fully sharded data parallelism using a blockwise schedule. We conduct experiments with popular GPT-style models and observe up to a 30% increase in throughput compared to the state-of-the-art breath-first pipeline parallelism. Besides, our evaluation also demonstrates up to a 68% increase in throughput and a 10% reduction in memory consumption compared to the memory-efficient 1F1B method.
Sequence Parallelism: Long Sequence Training from System Perspective
Transformer achieves promising results on various tasks. However, self-attention suffers from quadratic memory requirements with respect to the sequence length. Existing work focuses on reducing time and space complexity from an algorithm perspective. In this work, we propose sequence parallelism, a memory-efficient parallelism method to help us break input sequence length limitation and train with longer sequences on GPUs efficiently. Our approach is compatible with most existing parallelisms (e.g. data parallelism, pipeline parallelism and tensor parallelism), which means our sequence parallelism makes 4D parallelism possible. More importantly, we no longer require a single device to hold the whole sequence. That is, with sparse attention, our sequence parallelism enables us to train transformer with infinite long sequence. Specifically, we split the input sequence into multiple chunks and feed each chunk into its corresponding device (i.e. GPU). To compute the attention output, we integrated ring-style communication with self-attention calculation and proposed Ring Self-Attention (RSA). Experiments show that sequence parallelism performs well when scaling with batch size and sequence length. Compared with tensor parallelism, our approach achieved 13.7times and 3.0times maximum batch size and sequence length respectively when scaling up to 64 NVIDIA P100 GPUs. With sparse attention, sequence can handle sequence with over 114K tokens, which is over 27times longer than existing sparse attention works holding the whole sequence on a single device.
TokenRing: An Efficient Parallelism Framework for Infinite-Context LLMs via Bidirectional Communication
Efficient parallelization of Large Language Models (LLMs) with long sequences is essential but challenging due to their significant computational and memory demands, particularly stemming from communication bottlenecks in attention mechanisms. While sequence parallelism (SP) has been introduced as a potential solution, existing methods often suffer from limited scalability or inefficiency, rendering their effectiveness. Ring-Attention demonstrates the potential for scaling sequence processing but faces significant limitations due to its reliance on peer-to-peer (P2P) communication and inefficient utilization of network resources. As the degree of SP increases, the quadratic decrease in computation time per step contrasts sharply with the linear reduction in communication volume, exacerbating communication bottlenecks. To address these challenges, we propose TokenRing, a fine-grained parallel framework that leverages bidirectional P2P communication to effectively overlap computation and data transmission. By partitioning the attention block and concurrently transmitting Query and block outputs (i.e., block_out and block_lse) within a fully connected mesh topology, TokenRing achieves significant reductions in communication overhead and better load balancing. These innovations improve the scalability and efficiency of distributed Transformer models, particularly for long-context sequences. Experimental results demonstrate that TokenRing enhances throughput and reduces communication latency. Moreover, its design adapts seamlessly to various multi-GPU interconnect solutions, such as Huawei Ascend, ensuring broad compatibility and cost-effectiveness for distributed LLM inference and training. The code is available at: https://github.com/ACA-Lab-SJTU/token-ring.
Kraken: Inherently Parallel Transformers For Efficient Multi-Device Inference
Large Transformer networks are increasingly used in settings where low inference latency can improve the end-user experience and enable new applications. However, autoregressive inference is resource intensive and requires parallelism for efficiency. Parallelism introduces collective communication that is both expensive and represents a phase when hardware resources are underutilized. Towards mitigating this, Kraken is an evolution of the standard Transformer architecture that is designed to complement existing tensor parallelism schemes for efficient inference on multi-device systems. By introducing a fixed degree of intra-layer model parallelism, the architecture allows collective operations to be overlapped with compute, decreasing latency and increasing hardware utilization. When trained on OpenWebText, Kraken models reach a similar perplexity as standard Transformers while also preserving their language modeling capabilities when evaluated on the SuperGLUE benchmark. Importantly, when tested on multi-GPU systems using TensorRT-LLM engines, Kraken speeds up Time To First Token by a mean of 35.6% across a range of model sizes, context lengths, and degrees of tensor parallelism.
ASGDiffusion: Parallel High-Resolution Generation with Asynchronous Structure Guidance
Training-free high-resolution (HR) image generation has garnered significant attention due to the high costs of training large diffusion models. Most existing methods begin by reconstructing the overall structure and then proceed to refine the local details. Despite their advancements, they still face issues with repetitive patterns in HR image generation. Besides, HR generation with diffusion models incurs significant computational costs. Thus, parallel generation is essential for interactive applications. To solve the above limitations, we introduce a novel method named ASGDiffusion for parallel HR generation with Asynchronous Structure Guidance (ASG) using pre-trained diffusion models. To solve the pattern repetition problem of HR image generation, ASGDiffusion leverages the low-resolution (LR) noise weighted by the attention mask as the structure guidance for the denoising step to ensure semantic consistency. The proposed structure guidance can significantly alleviate the pattern repetition problem. To enable parallel generation, we further propose a parallelism strategy, which calculates the patch noises and structure guidance asynchronously. By leveraging multi-GPU parallel acceleration, we significantly accelerate generation speed and reduce memory usage per GPU. Extensive experiments demonstrate that our method effectively and efficiently addresses common issues like pattern repetition and achieves state-of-the-art HR generation.
T3: Transparent Tracking & Triggering for Fine-grained Overlap of Compute & Collectives
Large Language Models increasingly rely on distributed techniques for their training and inference. These techniques require communication across devices which can reduce scaling efficiency as the number of devices increases. While some distributed techniques can overlap, and thus, hide this communication with independent computations, techniques such as Tensor Parallelism (TP) inherently serialize communication with model execution. One approach to hide this serialized communication is to interleave it with the producer operation (of the communicated data) in a fine-grained manner. However, this fine-grained interleaving of communication and computation in software can be difficult. Furthermore, as with any concurrent execution, it requires compute and memory resources to be shared between computation and communication, causing resource contention that reduces overlapping efficacy. To overcome these challenges, we propose T3 which applies hardware-software co-design to transparently overlap serialized communication while minimizing resource contention with compute. T3 transparently fuses producer operations with the subsequent communication via a simple configuration of the producer's output address space and requires minor software changes. At the hardware level, T3 adds a lightweight track and trigger mechanism to orchestrate the producer's compute, and communication. It further uses compute-enhanced memories for communication's attendant compute. As a result, T3 reduces resource contention, and efficiently overlaps serialized communication with computation. For important Transformer models like T-NLG, T3 speeds up communication-heavy sublayers by 30% geomean (max 47%) and reduces data movement by 22% geomean (max 36%). Furthermore, T3's benefits persist as models scale: geomean 29% for sublayers in sim500-billion parameter models, PALM and MT-NLG.
Zero Bubble Pipeline Parallelism
Pipeline parallelism is one of the key components for large-scale distributed training, yet its efficiency suffers from pipeline bubbles which were deemed inevitable. In this work, we introduce a scheduling strategy that, to our knowledge, is the first to successfully achieve zero pipeline bubbles under synchronous training semantics. The key idea behind this improvement is to split the backward computation into two parts, one that computes gradient for the input and another that computes for the parameters. Based on this idea, we handcraft novel pipeline schedules that significantly outperform the baseline methods. We further develop an algorithm that automatically finds an optimal schedule based on specific model configuration and memory limit. Additionally, to truly achieve zero bubble, we introduce a novel technique to bypass synchronizations during the optimizer step. Experimental evaluations show that our method outperforms the 1F1B schedule up to 23% in throughput under a similar memory limit. This number can be further pushed to 31% when the memory constraint is relaxed. We believe our results mark a major step forward in harnessing the true potential of pipeline parallelism. We open sourced our implementation based on the popular Megatron-LM repository on https://github.com/sail-sg/zero-bubble-pipeline-parallelism.
NeuPIMs: NPU-PIM Heterogeneous Acceleration for Batched LLM Inferencing
Modern transformer-based Large Language Models (LLMs) are constructed with a series of decoder blocks. Each block comprises three key components: (1) QKV generation, (2) multi-head attention, and (3) feed-forward networks. In batched processing, QKV generation and feed-forward networks involve compute-intensive matrix-matrix multiplications (GEMM), while multi-head attention requires bandwidth-heavy matrix-vector multiplications (GEMV). Machine learning accelerators like TPUs or NPUs are proficient in handling GEMM but are less efficient for GEMV computations. Conversely, Processing-in-Memory (PIM) technology is tailored for efficient GEMV computation, while it lacks the computational power to handle GEMM effectively. Inspired by this insight, we propose NeuPIMs, a heterogeneous acceleration system that jointly exploits a conventional GEMM-focused NPU and GEMV-optimized PIM devices. The main challenge in efficiently integrating NPU and PIM lies in enabling concurrent operations on both platforms, each addressing a specific kernel type. First, existing PIMs typically operate in a "blocked" mode, allowing only either NPU or PIM to be active at any given time. Second, the inherent dependencies between GEMM and GEMV in LLMs restrict their parallel processing. To tackle these challenges, NeuPIMs is equipped with dual row buffers in each bank, facilitating the simultaneous management of memory read/write operations and PIM commands. Further, NeuPIMs employs a runtime sub-batch interleaving technique to maximize concurrent execution, leveraging batch parallelism to allow two independent sub-batches to be pipelined within a single NeuPIMs device. Our evaluation demonstrates that compared to GPU-only, NPU-only, and a na\"ive NPU+PIM integrated acceleration approaches, NeuPIMs achieves 3times, 2.4times and 1.6times throughput improvement, respectively.
BitPipe: Bidirectional Interleaved Pipeline Parallelism for Accelerating Large Models Training
With the increasing scale of models, the need for efficient distributed training has become increasingly urgent. Recently, many synchronous pipeline parallelism approaches have been proposed to improve training throughput. However, these approaches still suffer from two major issues, i.e., pipeline bubbles caused by periodic flushing and extra communication due to the increasing number of pipeline stages. To this end, we propose BitPipe, a bidirectional interleaved pipeline parallelism for accelerating large models training. Specifically, a hybrid scheme of fusing interleaved pipelines with bidirectional pipelines is proposed to reduce the computational time of each single micro-batch and multiply the number of devices executing simultaneously. A V-shaped schedule with eager gradient synchronization is introduced to reduce and overlap the communication between devices. Experiments conducted on up to 32 GPUs show that BitPipe improves the training throughput of GPT-style and BERT-style models by 1.05x-1.28x compared to the state-of-the-art synchronous approaches. The code of our implementation is available at https://github.com/wuhouming/BitPipe.
Fast and Accurate Network Embeddings via Very Sparse Random Projection
We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP.
DSP: Dynamic Sequence Parallelism for Multi-Dimensional Transformers
Scaling multi-dimensional transformers to long sequences is indispensable across various domains. However, the challenges of large memory requirements and slow speeds of such sequences necessitate sequence parallelism. All existing approaches fall under the category of embedded sequence parallelism, which are limited to shard along a single sequence dimension, thereby introducing significant communication overhead. However, the nature of multi-dimensional transformers involves independent calculations across multiple sequence dimensions. To this end, we propose Dynamic Sequence Parallelism (DSP) as a novel abstraction of sequence parallelism. DSP dynamically switches the parallel dimension among all sequences according to the computation stage with efficient resharding strategy. DSP offers significant reductions in communication costs, adaptability across modules, and ease of implementation with minimal constraints. Experimental evaluations demonstrate DSP's superiority over state-of-the-art embedded sequence parallelism methods by remarkable throughput improvements ranging from 32.2% to 10x, with less than 25% communication volume.
2BP: 2-Stage Backpropagation
As Deep Neural Networks (DNNs) grow in size and complexity, they often exceed the memory capacity of a single accelerator, necessitating the sharding of model parameters across multiple accelerators. Pipeline parallelism is a commonly used sharding strategy for training large DNNs. However, current implementations of pipeline parallelism are being unintentionally bottlenecked by the automatic differentiation tools provided by ML frameworks. This paper introduces 2-stage backpropagation (2BP). By splitting the backward propagation step into two separate stages, we can reduce idle compute time. We tested 2BP on various model architectures and pipelining schedules, achieving increases in throughput in all cases. Using 2BP, we were able to achieve a 1.70x increase in throughput compared to traditional methods when training a LLaMa-like transformer with 7 billion parameters across 4 GPUs.
Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.
Pipelined Backpropagation at Scale: Training Large Models without Batches
New hardware can substantially increase the speed and efficiency of deep neural network training. To guide the development of future hardware architectures, it is pertinent to explore the hardware and machine learning properties of alternative training algorithms. In this work we evaluate the use of small batch, fine-grained Pipelined Backpropagation, an asynchronous pipeline parallel training algorithm that has significant hardware advantages. We introduce two methods, Spike Compensation and Linear Weight Prediction, that effectively mitigate the downsides caused by the asynchronicity of Pipelined Backpropagation and outperform existing techniques in our setting. We show that appropriate normalization and small batch sizes can also aid training. With our methods, fine-grained Pipelined Backpropagation using a batch size of one can match the accuracy of SGD for multiple networks trained on CIFAR-10 and ImageNet. Simple scaling rules allow the use of existing hyperparameters for traditional training without additional tuning.
Faster and Better LLMs via Latency-Aware Test-Time Scaling
Test-Time Scaling (TTS) has proven effective in improving the performance of Large Language Models (LLMs) during inference. However, existing research has overlooked the efficiency of TTS from a latency-sensitive perspective. Through a latency-aware evaluation of representative TTS methods, we demonstrate that a compute-optimal TTS does not always result in the lowest latency in scenarios where latency is critical. To address this gap and achieve latency-optimal TTS, we propose two key approaches by optimizing the concurrency configurations: (1) branch-wise parallelism, which leverages multiple concurrent inference branches, and (2) sequence-wise parallelism, enabled by speculative decoding. By integrating these two approaches and allocating computational resources properly to each, our latency-optimal TTS enables a 32B model to reach 82.3% accuracy on MATH-500 within 1 minute and a smaller 3B model to achieve 72.4% within 10 seconds. Our work emphasizes the importance of latency-aware TTS and demonstrates its ability to deliver both speed and accuracy in latency-sensitive scenarios.
Revisiting Ensemble Methods for Stock Trading and Crypto Trading Tasks at ACM ICAIF FinRL Contest 2023-2024
Reinforcement learning has demonstrated great potential for performing financial tasks. However, it faces two major challenges: policy instability and sampling bottlenecks. In this paper, we revisit ensemble methods with massively parallel simulations on graphics processing units (GPUs), significantly enhancing the computational efficiency and robustness of trained models in volatile financial markets. Our approach leverages the parallel processing capability of GPUs to significantly improve the sampling speed for training ensemble models. The ensemble models combine the strengths of component agents to improve the robustness of financial decision-making strategies. We conduct experiments in both stock and cryptocurrency trading tasks to evaluate the effectiveness of our approach. Massively parallel simulation on a single GPU improves the sampling speed by up to 1,746times using 2,048 parallel environments compared to a single environment. The ensemble models have high cumulative returns and outperform some individual agents, reducing maximum drawdown by up to 4.17% and improving the Sharpe ratio by up to 0.21. This paper describes trading tasks at ACM ICAIF FinRL Contests in 2023 and 2024.
Pathways: Asynchronous Distributed Dataflow for ML
We present the design of a new large scale orchestration layer for accelerators. Our system, Pathways, is explicitly designed to enable exploration of new systems and ML research ideas, while retaining state of the art performance for current models. Pathways uses a sharded dataflow graph of asynchronous operators that consume and produce futures, and efficiently gang-schedules heterogeneous parallel computations on thousands of accelerators while coordinating data transfers over their dedicated interconnects. Pathways makes use of a novel asynchronous distributed dataflow design that lets the control plane execute in parallel despite dependencies in the data plane. This design, with careful engineering, allows Pathways to adopt a single-controller model that makes it easier to express complex new parallelism patterns. We demonstrate that Pathways can achieve performance parity (~100% accelerator utilization) with state-of-the-art systems when running SPMD computations over 2048 TPUs, while also delivering throughput comparable to the SPMD case for Transformer models that are pipelined across 16 stages, or sharded across two islands of accelerators connected over a data center network.
Variance Reduction in Deep Learning: More Momentum is All You Need
Variance reduction (VR) techniques have contributed significantly to accelerating learning with massive datasets in the smooth and strongly convex setting (Schmidt et al., 2017; Johnson & Zhang, 2013; Roux et al., 2012). However, such techniques have not yet met the same success in the realm of large-scale deep learning due to various factors such as the use of data augmentation or regularization methods like dropout (Defazio & Bottou, 2019). This challenge has recently motivated the design of novel variance reduction techniques tailored explicitly for deep learning (Arnold et al., 2019; Ma & Yarats, 2018). This work is an additional step in this direction. In particular, we exploit the ubiquitous clustering structure of rich datasets used in deep learning to design a family of scalable variance reduced optimization procedures by combining existing optimizers (e.g., SGD+Momentum, Quasi Hyperbolic Momentum, Implicit Gradient Transport) with a multi-momentum strategy (Yuan et al., 2019). Our proposal leads to faster convergence than vanilla methods on standard benchmark datasets (e.g., CIFAR and ImageNet). It is robust to label noise and amenable to distributed optimization. We provide a parallel implementation in JAX.
PipeDream: Fast and Efficient Pipeline Parallel DNN Training
PipeDream is a Deep Neural Network(DNN) training system for GPUs that parallelizes computation by pipelining execution across multiple machines. Its pipeline parallel computing model avoids the slowdowns faced by data-parallel training when large models and/or limited network bandwidth induce high communication-to-computation ratios. PipeDream reduces communication by up to 95% for large DNNs relative to data-parallel training, and allows perfect overlap of communication and computation. PipeDream keeps all available GPUs productive by systematically partitioning DNN layers among them to balance work and minimize communication, versions model parameters for backward pass correctness, and schedules the forward and backward passes of different inputs in round-robin fashion to optimize "time to target accuracy". Experiments with five different DNNs on two different clusters show that PipeDream is up to 5x faster in time-to-accuracy compared to data-parallel training.
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
High network communication cost for synchronizing gradients and parameters is the well-known bottleneck of distributed training. In this work, we propose TernGrad that uses ternary gradients to accelerate distributed deep learning in data parallelism. Our approach requires only three numerical levels {-1,0,1}, which can aggressively reduce the communication time. We mathematically prove the convergence of TernGrad under the assumption of a bound on gradients. Guided by the bound, we propose layer-wise ternarizing and gradient clipping to improve its convergence. Our experiments show that applying TernGrad on AlexNet does not incur any accuracy loss and can even improve accuracy. The accuracy loss of GoogLeNet induced by TernGrad is less than 2% on average. Finally, a performance model is proposed to study the scalability of TernGrad. Experiments show significant speed gains for various deep neural networks. Our source code is available.
NoLoCo: No-all-reduce Low Communication Training Method for Large Models
Training large language models is generally done via optimization methods on clusters containing tens of thousands of accelerators, communicating over a high-bandwidth interconnect. Scaling up these clusters is expensive and can become impractical, imposing limits on the size of models that can be trained. Several recent studies have proposed training methods that are less communication intensive, avoiding the need for a highly connected compute cluster. These state-of-the-art low communication training methods still employ a synchronization step for model parameters, which, when performed over all model replicas, can become costly on a low-bandwidth network. In this work, we propose a novel optimization method, NoLoCo, that does not explicitly synchronize all model parameters during training and, as a result, does not require any collective communication. NoLoCo implicitly synchronizes model weights via a novel variant of the Nesterov momentum optimizer by partially averaging model weights with a randomly selected other one. We provide both a theoretical convergence analysis for our proposed optimizer as well as empirical results from language model training. We benchmark NoLoCo on a wide range of accelerator counts and model sizes, between 125M to 6.8B parameters. Our method requires significantly less communication overhead than fully sharded data parallel training or even widely used low communication training method, DiLoCo. The synchronization step itself is estimated to be one magnitude faster than the all-reduce used in DiLoCo for few hundred accelerators training over the internet. We also do not have any global blocking communication that reduces accelerator idling time. Compared to DiLoCo, we also observe up to 4% faster convergence rate with wide range of model sizes and accelerator counts.
SWARM Parallelism: Training Large Models Can Be Surprisingly Communication-Efficient
Many deep learning applications benefit from using large models with billions of parameters. Training these models is notoriously expensive due to the need for specialized HPC clusters. In this work, we consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions. We analyze the performance of existing model-parallel algorithms in these conditions and find configurations where training larger models becomes less communication-intensive. Based on these findings, we propose SWARM parallelism, a model-parallel training algorithm designed for poorly connected, heterogeneous and unreliable devices. SWARM creates temporary randomized pipelines between nodes that are rebalanced in case of failure. We empirically validate our findings and compare SWARM parallelism with existing large-scale training approaches. Finally, we combine our insights with compression strategies to train a large Transformer language model with 1B shared parameters (approximately 13B before sharing) on preemptible T4 GPUs with less than 200Mb/s network.
SSR: Speculative Parallel Scaling Reasoning in Test-time
Large language models (LLMs) have achieved impressive results on multi-step mathematical reasoning, yet at the cost of high computational overhead. This challenge is particularly acute for test-time scaling methods such as parallel decoding, which increase answer diversity but scale poorly in efficiency. To address this efficiency-accuracy trade-off, we propose SSR (Speculative Parallel Scaling Reasoning), a training-free framework that leverages a key insight: by introducing speculative decoding at the step level, we can accelerate reasoning without sacrificing correctness. SSR integrates two components: a Selective Parallel Module (SPM) that identifies a small set of promising reasoning strategies via model-internal scoring, and Step-level Speculative Decoding (SSD), which enables efficient draft-target collaboration for fine-grained reasoning acceleration. Experiments on three mathematical benchmarks-AIME 2024, MATH-500, and LiveMathBench - demonstrate that SSR achieves strong gains over baselines. For instance, on LiveMathBench, SSR improves pass@1 accuracy by 13.84% while reducing computation to 80.5% of the baseline FLOPs. On MATH-500, SSR reduces compute to only 30% with no loss in accuracy.
Sequential Gradient Coding For Straggler Mitigation
In distributed computing, slower nodes (stragglers) usually become a bottleneck. Gradient Coding (GC), introduced by Tandon et al., is an efficient technique that uses principles of error-correcting codes to distribute gradient computation in the presence of stragglers. In this paper, we consider the distributed computation of a sequence of gradients {g(1),g(2),ldots,g(J)}, where processing of each gradient g(t) starts in round-t and finishes by round-(t+T). Here Tgeq 0 denotes a delay parameter. For the GC scheme, coding is only across computing nodes and this results in a solution where T=0. On the other hand, having T>0 allows for designing schemes which exploit the temporal dimension as well. In this work, we propose two schemes that demonstrate improved performance compared to GC. Our first scheme combines GC with selective repetition of previously unfinished tasks and achieves improved straggler mitigation. In our second scheme, which constitutes our main contribution, we apply GC to a subset of the tasks and repetition for the remainder of the tasks. We then multiplex these two classes of tasks across workers and rounds in an adaptive manner, based on past straggler patterns. Using theoretical analysis, we demonstrate that our second scheme achieves significant reduction in the computational load. In our experiments, we study a practical setting of concurrently training multiple neural networks over an AWS Lambda cluster involving 256 worker nodes, where our framework naturally applies. We demonstrate that the latter scheme can yield a 16\% improvement in runtime over the baseline GC scheme, in the presence of naturally occurring, non-simulated stragglers.
Parallel Backpropagation for Inverse of a Convolution with Application to Normalizing Flows
Inverse of an invertible convolution is an important operation that comes up in Normalizing Flows, Image Deblurring, etc. The naive algorithm for backpropagation of this operation using Gaussian elimination has running time O(n^3) where n is the number of pixels in the image. We give a fast parallel backpropagation algorithm with running time O(n) for a square image and provide a GPU implementation of the same. Inverse Convolutions are usually used in Normalizing Flows in the sampling pass, making them slow. We propose to use Inverse Convolutions in the forward (image to latent vector) pass of the Normalizing flow. Since the sampling pass is the inverse of the forward pass, it will use convolutions only, resulting in efficient sampling times. We use our parallel backpropagation algorithm for optimizing the inverse convolution layer resulting in fast training times also. We implement this approach in various Normalizing Flow backbones, resulting in our Inverse-Flow models. We benchmark Inverse-Flow on standard datasets and show significantly improved sampling times with similar bits per dimension compared to previous models.
Inference Acceleration for Large Language Models on CPUs
In recent years, large language models have demonstrated remarkable performance across various natural language processing (NLP) tasks. However, deploying these models for real-world applications often requires efficient inference solutions to handle the computational demands. In this paper, we explore the utilization of CPUs for accelerating the inference of large language models. Specifically, we introduce a parallelized approach to enhance throughput by 1) Exploiting the parallel processing capabilities of modern CPU architectures, 2) Batching the inference request. Our evaluation shows the accelerated inference engine gives an 18-22x improvement in the generated token per sec. The improvement is more with longer sequence and larger models. In addition to this, we can also run multiple workers in the same machine with NUMA node isolation to further improvement in tokens/s. Table 2, we have received 4x additional improvement with 4 workers. This would also make Gen-AI based products and companies environment friendly, our estimates shows that CPU usage for Inference could reduce the power consumption of LLMs by 48.9% while providing production ready throughput and latency.
ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs
Scaling long-context ability is essential for Large Language Models (LLMs). To amortize the memory consumption across multiple devices in long-context training, inter-data partitioning (a.k.a. Data Parallelism) and intra-data partitioning (a.k.a. Context Parallelism) are commonly used. Current training frameworks predominantly treat the two techniques as orthogonal, and establish static communication groups to organize the devices as a static mesh (e.g., a 2D mesh). However, the sequences for LLM training typically vary in lengths, no matter for texts, multi-modalities or reinforcement learning. The mismatch between data heterogeneity and static mesh causes redundant communication and imbalanced computation, degrading the training efficiency. In this work, we introduce ByteScale, an efficient, flexible, and scalable LLM training framework for large-scale mixed training of long and short sequences. The core of ByteScale is a novel parallelism strategy, namely Hybrid Data Parallelism (HDP), which unifies the inter- and intra-data partitioning with a dynamic mesh design. In particular, we build a communication optimizer, which eliminates the redundant communication for short sequences by data-aware sharding and dynamic communication, and further compresses the communication cost for long sequences by selective offloading. Besides, we also develop a balance scheduler to mitigate the imbalanced computation by parallelism-aware data assignment. We evaluate ByteScale with the model sizes ranging from 7B to 141B, context lengths from 256K to 2048K, on a production cluster with more than 12,000 GPUs. Experiment results show that ByteScale outperforms the state-of-the-art training system by up to 7.89x.
The Serial Scaling Hypothesis
While machine learning has advanced through massive parallelization, we identify a critical blind spot: some problems are fundamentally sequential. These "inherently serial" problems-from mathematical reasoning to physical simulations to sequential decision-making-require dependent computational steps that cannot be parallelized. Drawing from complexity theory, we formalize this distinction and demonstrate that current parallel-centric architectures face fundamental limitations on such tasks. We argue that recognizing the serial nature of computation holds profound implications on machine learning, model design, hardware development. As AI tackles increasingly complex reasoning, deliberately scaling serial computation-not just parallel computation-is essential for continued progress.
Quantized Distributed Training of Large Models with Convergence Guarantees
Communication-reduction techniques are a popular way to improve scalability in data-parallel training of deep neural networks (DNNs). The recent emergence of large language models such as GPT has created the need for new approaches to exploit data-parallelism. Among these, fully-sharded data parallel (FSDP) training is highly popular, yet it still encounters scalability bottlenecks. One reason is that applying compression techniques to FSDP is challenging: as the vast majority of the communication involves the model's weights, direct compression alters convergence and leads to accuracy loss. We present QSDP, a variant of FSDP which supports both gradient and weight quantization with theoretical guarantees, is simple to implement and has essentially no overheads. To derive QSDP we prove that a natural modification of SGD achieves convergence even when we only maintain quantized weights, and thus the domain over which we train consists of quantized points and is, therefore, highly non-convex. We validate this approach by training GPT-family models with up to 1.3 billion parameters on a multi-node cluster. Experiments show that QSDP preserves model accuracy, while completely removing the communication bottlenecks of FSDP, providing end-to-end speedups of up to 2.2x.
GSPMD: General and Scalable Parallelization for ML Computation Graphs
We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computations. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator based on limited user annotations, making it convenient to scale existing single-device programs. It solves several technical challenges for production usage, allowing GSPMD to achieve 50% to 62% compute utilization on up to 2048 Cloud TPUv3 cores for models with up to one trillion parameters.
PaReprop: Fast Parallelized Reversible Backpropagation
The growing size of datasets and deep learning models has made faster and memory-efficient training crucial. Reversible transformers have recently been introduced as an exciting new method for extremely memory-efficient training, but they come with an additional computation overhead of activation re-computation in the backpropagation phase. We present PaReprop, a fast Parallelized Reversible Backpropagation algorithm that parallelizes the additional activation re-computation overhead in reversible training with the gradient computation itself in backpropagation phase. We demonstrate the effectiveness of the proposed PaReprop algorithm through extensive benchmarking across model families (ViT, MViT, Swin and RoBERTa), data modalities (Vision & NLP), model sizes (from small to giant), and training batch sizes. Our empirical results show that PaReprop achieves up to 20% higher training throughput than vanilla reversible training, largely mitigating the theoretical overhead of 25% lower throughput from activation recomputation in reversible training. Project page: https://tylerzhu.com/pareprop.
High Throughput Training of Deep Surrogates from Large Ensemble Runs
Recent years have seen a surge in deep learning approaches to accelerate numerical solvers, which provide faithful but computationally intensive simulations of the physical world. These deep surrogates are generally trained in a supervised manner from limited amounts of data slowly generated by the same solver they intend to accelerate. We propose an open-source framework that enables the online training of these models from a large ensemble run of simulations. It leverages multiple levels of parallelism to generate rich datasets. The framework avoids I/O bottlenecks and storage issues by directly streaming the generated data. A training reservoir mitigates the inherent bias of streaming while maximizing GPU throughput. Experiment on training a fully connected network as a surrogate for the heat equation shows the proposed approach enables training on 8TB of data in 2 hours with an accuracy improved by 47% and a batch throughput multiplied by 13 compared to a traditional offline procedure.
TEMPI: An Interposed MPI Library with a Canonical Representation of CUDA-aware Datatypes
MPI derived datatypes are an abstraction that simplifies handling of non-contiguous data in MPI applications. These datatypes are recursively constructed at runtime from primitive Named Types defined in the MPI standard. More recently, the development and deployment of CUDA-aware MPI implementations has encouraged the transition of distributed high-performance MPI codes to use GPUs. Such implementations allow MPI functions to directly operate on GPU buffers, easing integration of GPU compute into MPI codes. This work first presents a novel datatype handling strategy for nested strided datatypes, which finds a middle ground between the specialized or generic handling in prior work. This work also shows that the performance characteristics of non-contiguous data handling can be modeled with empirical system measurements, and used to transparently improve MPI_Send/Recv latency. Finally, despite substantial attention to non-contiguous GPU data and CUDA-aware MPI implementations, good performance cannot be taken for granted. This work demonstrates its contributions through an MPI interposer library, TEMPI. TEMPI can be used with existing MPI deployments without system or application changes. Ultimately, the interposed-library model of this work demonstrates MPI_Pack speedup of up to 242000x and MPI_Send speedup of up to 59000x compared to the MPI implementation deployed on a leadership-class supercomputer. This yields speedup of more than 917x in a 3D halo exchange with 3072 processes.
Dynamic Load Balancing Strategies for Graph Applications on GPUs
Acceleration of graph applications on GPUs has found large interest due to the ubiquitous use of graph processing in various domains. The inherent irregularity in graph applications leads to several challenges for parallelization. A key challenge, which we address in this paper, is that of load-imbalance. If the work-assignment to threads uses node-based graph partitioning, it can result in skewed task-distribution, leading to poor load-balance. In contrast, if the work-assignment uses edge-based graph partitioning, the load-balancing is better, but the memory requirement is relatively higher. This makes it unsuitable for large graphs. In this work, we propose three techniques for improved load-balancing of graph applications on GPUs. Each technique brings in unique advantages, and a user may have to employ a specific technique based on the requirement. Using Breadth First Search and Single Source Shortest Paths as our processing kernels, we illustrate the effectiveness of each of the proposed techniques in comparison to the existing node-based and edge-based mechanisms.
MPIrigen: MPI Code Generation through Domain-Specific Language Models
The imperative need to scale computation across numerous nodes highlights the significance of efficient parallel computing, particularly in the realm of Message Passing Interface (MPI) integration. The challenging parallel programming task of generating MPI-based parallel programs has remained unexplored. This study first investigates the performance of state-of-the-art language models in generating MPI-based parallel programs. Findings reveal that widely used models such as GPT-3.5 and PolyCoder (specialized multi-lingual code models) exhibit notable performance degradation, when generating MPI-based programs compared to general-purpose programs. In contrast, domain-specific models such as MonoCoder, which are pretrained on MPI-related programming languages of C and C++, outperform larger models. Subsequently, we introduce a dedicated downstream task of MPI-based program generation by fine-tuning MonoCoder on HPCorpusMPI. We call the resulting model as MPIrigen. We propose an innovative preprocessing for completion only after observing the whole code, thus enabling better completion with a wider context. Comparative analysis against GPT-3.5 zero-shot performance, using a novel HPC-oriented evaluation method, demonstrates that MPIrigen excels in generating accurate MPI functions up to 0.8 accuracy in location and function predictions, and with more than 0.9 accuracy for argument predictions. The success of this tailored solution underscores the importance of domain-specific fine-tuning in optimizing language models for parallel computing code generation, paving the way for a new generation of automatic parallelization tools. The sources of this work are available at our GitHub MPIrigen repository: https://github.com/Scientific-Computing-Lab-NRCN/MPI-rigen
DeepSpeed-FastGen: High-throughput Text Generation for LLMs via MII and DeepSpeed-Inference
The deployment and scaling of large language models (LLMs) have become critical as they permeate various applications, demanding high-throughput and low-latency serving systems. Existing frameworks struggle to balance these requirements, especially for workloads with long prompts. This paper introduces DeepSpeed-FastGen, a system that employs Dynamic SplitFuse, a novel prompt and generation composition strategy, to deliver up to 2.3x higher effective throughput, 2x lower latency on average, and up to 3.7x lower (token-level) tail latency, compared to state-of-the-art systems like vLLM. We leverage a synergistic combination of DeepSpeed-MII and DeepSpeed-Inference to provide an efficient and easy-to-use serving system for LLMs. DeepSpeed-FastGen's advanced implementation supports a range of models and offers both non-persistent and persistent deployment options, catering to diverse user scenarios from interactive sessions to long-running applications. We present a detailed benchmarking methodology, analyze the performance through latency-throughput curves, and investigate scalability via load balancing. Our evaluations demonstrate substantial improvements in throughput and latency across various models and hardware configurations. We discuss our roadmap for future enhancements, including broader model support and new hardware backends. The DeepSpeed-FastGen code is readily available for community engagement and contribution.
Communication-Efficient Language Model Training Scales Reliably and Robustly: Scaling Laws for DiLoCo
As we scale to more massive machine learning models, the frequent synchronization demands inherent in data-parallel approaches create significant slowdowns, posing a critical challenge to further scaling. Recent work develops an approach (DiLoCo) that relaxes synchronization demands without compromising model quality. However, these works do not carefully analyze how DiLoCo's behavior changes with model size. In this work, we study the scaling law behavior of DiLoCo when training LLMs under a fixed compute budget. We focus on how algorithmic factors, including number of model replicas, hyperparameters, and token budget affect training in ways that can be accurately predicted via scaling laws. We find that DiLoCo scales both predictably and robustly with model size. When well-tuned, DiLoCo scales better than data-parallel training with model size, and can outperform data-parallel training even at small model sizes. Our results showcase a more general set of benefits of DiLoCo than previously documented, including increased optimal batch sizes, improved downstream generalization with scale, and improved evaluation loss for a fixed token budget.
Breadth-First Pipeline Parallelism
We introduce Breadth-First Pipeline Parallelism, a novel training schedule which optimizes the combination of pipeline and data parallelism. Breadth-First Pipeline Parallelism lowers training time, cost and memory usage by combining a high GPU utilization with a small batch size per GPU, and by making use of fully sharded data parallelism. Experimentally, we observed an increase of up to 43% in training throughput for a 52 billion-parameter model using a small batch size per GPU compared to Megatron-LM, which would reduce the training time and cost by the same amount on a large GPU cluster.
cuRobo: Parallelized Collision-Free Minimum-Jerk Robot Motion Generation
This paper explores the problem of collision-free motion generation for manipulators by formulating it as a global motion optimization problem. We develop a parallel optimization technique to solve this problem and demonstrate its effectiveness on massively parallel GPUs. We show that combining simple optimization techniques with many parallel seeds leads to solving difficult motion generation problems within 50ms on average, 60x faster than state-of-the-art (SOTA) trajectory optimization methods. We achieve SOTA performance by combining L-BFGS step direction estimation with a novel parallel noisy line search scheme and a particle-based optimization solver. To further aid trajectory optimization, we develop a parallel geometric planner that plans within 20ms and also introduce a collision-free IK solver that can solve over 7000 queries/s. We package our contributions into a state of the art GPU accelerated motion generation library, cuRobo and release it to enrich the robotics community. Additional details are available at https://curobo.org
Fast and Accurate Model Scaling
In this work we analyze strategies for convolutional neural network scaling; that is, the process of scaling a base convolutional network to endow it with greater computational complexity and consequently representational power. Example scaling strategies may include increasing model width, depth, resolution, etc. While various scaling strategies exist, their tradeoffs are not fully understood. Existing analysis typically focuses on the interplay of accuracy and flops (floating point operations). Yet, as we demonstrate, various scaling strategies affect model parameters, activations, and consequently actual runtime quite differently. In our experiments we show the surprising result that numerous scaling strategies yield networks with similar accuracy but with widely varying properties. This leads us to propose a simple fast compound scaling strategy that encourages primarily scaling model width, while scaling depth and resolution to a lesser extent. Unlike currently popular scaling strategies, which result in about O(s) increase in model activation w.r.t. scaling flops by a factor of s, the proposed fast compound scaling results in close to O(s) increase in activations, while achieving excellent accuracy. This leads to comparable speedups on modern memory-limited hardware (e.g., GPU, TPU). More generally, we hope this work provides a framework for analyzing and selecting scaling strategies under various computational constraints.
PipeInfer: Accelerating LLM Inference using Asynchronous Pipelined Speculation
Inference of Large Language Models (LLMs) across computer clusters has become a focal point of research in recent times, with many acceleration techniques taking inspiration from CPU speculative execution. These techniques reduce bottlenecks associated with memory bandwidth, but also increase end-to-end latency per inference run, requiring high speculation acceptance rates to improve performance. Combined with a variable rate of acceptance across tasks, speculative inference techniques can result in reduced performance. Additionally, pipeline-parallel designs require many user requests to maintain maximum utilization. As a remedy, we propose PipeInfer, a pipelined speculative acceleration technique to reduce inter-token latency and improve system utilization for single-request scenarios while also improving tolerance to low speculation acceptance rates and low-bandwidth interconnects. PipeInfer exhibits up to a 2.15times improvement in generation speed over standard speculative inference. PipeInfer achieves its improvement through Continuous Asynchronous Speculation and Early Inference Cancellation, the former improving latency and generation speed by running single-token inference simultaneously with several speculative runs, while the latter improves speed and latency by skipping the computation of invalidated runs, even in the middle of inference.
FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning
Scaling Transformers to longer sequence lengths has been a major problem in the last several years, promising to improve performance in language modeling and high-resolution image understanding, as well as to unlock new applications in code, audio, and video generation. The attention layer is the main bottleneck in scaling to longer sequences, as its runtime and memory increase quadratically in the sequence length. FlashAttention exploits the asymmetric GPU memory hierarchy to bring significant memory saving (linear instead of quadratic) and runtime speedup (2-4times compared to optimized baselines), with no approximation. However, FlashAttention is still not nearly as fast as optimized matrix-multiply (GEMM) operations, reaching only 25-40\% of the theoretical maximum FLOPs/s. We observe that the inefficiency is due to suboptimal work partitioning between different thread blocks and warps on the GPU, causing either low-occupancy or unnecessary shared memory reads/writes. We propose FlashAttention-2, with better work partitioning to address these issues. In particular, we (1) tweak the algorithm to reduce the number of non-matmul FLOPs (2) parallelize the attention computation, even for a single head, across different thread blocks to increase occupancy, and (3) within each thread block, distribute the work between warps to reduce communication through shared memory. These yield around 2times speedup compared to FlashAttention, reaching 50-73\% of the theoretical maximum FLOPs/s on A100 and getting close to the efficiency of GEMM operations. We empirically validate that when used end-to-end to train GPT-style models, FlashAttention-2 reaches training speed of up to 225 TFLOPs/s per A100 GPU (72\% model FLOPs utilization).
Balancing Pipeline Parallelism with Vocabulary Parallelism
Pipeline parallelism is widely used to scale the training of transformer-based large language models, various works have been done to improve its throughput and memory footprint. In this paper, we address a frequently overlooked issue: the vocabulary layers can cause imbalanced computation and memory usage across pipeline stages, worsening pipeline bubbles and the memory bottleneck. To tackle this, we partition the vocabulary layers evenly across pipeline devices and group the computation into pipeline passes. To reduce the activation memory overhead, we propose several algorithms to reduce communication barriers within vocabulary layers. Additionally, we utilize a generalizable method to integrate Vocabulary Parallelism with existing pipeline schedules. By combining these techniques, our methods effectively balance the computation and parameter memory, with only a small constant activation memory overhead. Notably, when combined with activation memory-balanced schedules like V-Half, our approach achieves perfect balance in both memory and computation. Extensive evaluations demonstrate that our method achieves computation and memory balance regardless of the vocabulary size, resulting in a 5% to 51% improvement in throughput compared to naive approaches, meanwhile significantly reducing peak memory usage especially for large vocabulary scenarios. Our implementation is open-sourced at https://github.com/sail-sg/VocabularyParallelism .
CO2: Efficient Distributed Training with Full Communication-Computation Overlap
The fundamental success of large language models hinges upon the efficacious implementation of large-scale distributed training techniques. Nevertheless, building a vast, high-performance cluster featuring high-speed communication interconnectivity is prohibitively costly, and accessible only to prominent entities. In this work, we aim to lower this barrier and democratize large-scale training with limited bandwidth clusters. We propose a new approach called CO2 that introduces local-updating and asynchronous communication to the distributed data-parallel training, thereby facilitating the full overlap of COmunication with COmputation. CO2 is able to attain a high scalability even on extensive multi-node clusters constrained by very limited communication bandwidth. We further propose the staleness gap penalty and outer momentum clipping techniques together with CO2 to bolster its convergence and training stability. Besides, CO2 exhibits seamless integration with well-established ZeRO-series optimizers which mitigate memory consumption of model states with large model training. We also provide a mathematical proof of convergence, accompanied by the establishment of a stringent upper bound. Furthermore, we validate our findings through an extensive set of practical experiments encompassing a wide range of tasks in the fields of computer vision and natural language processing. These experiments serve to demonstrate the capabilities of CO2 in terms of convergence, generalization, and scalability when deployed across configurations comprising up to 128 A100 GPUs. The outcomes emphasize the outstanding capacity of CO2 to hugely improve scalability, no matter on clusters with 800Gbps RDMA or 80Gbps TCP/IP inter-node connections.
From promise to practice: realizing high-performance decentralized training
Decentralized training of deep neural networks has attracted significant attention for its theoretically superior scalability over synchronous data-parallel methods like All-Reduce. However, realizing this potential in multi-node training is challenging due to the complex design space that involves communication topologies, computation patterns, and optimization algorithms. This paper identifies three key factors that can lead to speedups over All-Reduce training and constructs a runtime model to determine when, how, and to what degree decentralization can yield shorter per-iteration runtimes. Furthermore, to support the decentralized training of transformer-based models, we study a decentralized Adam algorithm that allows for overlapping communications and computations, prove its convergence, and propose an accumulation technique to mitigate the high variance caused by small local batch sizes. We deploy the proposed approach in clusters with up to 64 GPUs and demonstrate its practicality and advantages in both runtime and generalization performance under a fixed iteration budget.
XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX
We present XLand-MiniGrid, a suite of tools and grid-world environments for meta-reinforcement learning research inspired by the diversity and depth of XLand and the simplicity and minimalism of MiniGrid. XLand-Minigrid is written in JAX, designed to be highly scalable, and can potentially run on GPU or TPU accelerators, democratizing large-scale experimentation with limited resources. To demonstrate the generality of our library, we have implemented some well-known single-task environments as well as new meta-learning environments capable of generating 10^8 distinct tasks. We have empirically shown that the proposed environments can scale up to 2^{13} parallel instances on the GPU, reaching tens of millions of steps per second.
DataStates-LLM: Lazy Asynchronous Checkpointing for Large Language Models
LLMs have seen rapid adoption in all domains. They need to be trained on high-end high-performance computing (HPC) infrastructures and ingest massive amounts of input data. Unsurprisingly, at such a large scale, unexpected events (e.g., failures of components, instability of the software, undesirable learning patterns, etc.), are frequent and typically impact the training in a negative fashion. Thus, LLMs need to be checkpointed frequently so that they can be rolled back to a stable state and subsequently fine-tuned. However, given the large sizes of LLMs, a straightforward checkpointing solution that directly writes the model parameters and optimizer state to persistent storage (e.g., a parallel file system), incurs significant I/O overheads. To address this challenge, in this paper we study how to reduce the I/O overheads for enabling fast and scalable checkpointing for LLMs that can be applied at high frequency (up to the granularity of individual iterations) without significant impact on the training process. Specifically, we introduce a lazy asynchronous multi-level approach that takes advantage of the fact that the tensors making up the model and optimizer state shards remain immutable for extended periods of time, which makes it possible to copy their content in the background with minimal interference during the training process. We evaluate our approach at scales of up to 180 GPUs using different model sizes, parallelism settings, and checkpointing frequencies. The results show up to 48times faster checkpointing and 2.2times faster end-to-end training runtime compared with the state-of-art checkpointing approaches.
S*: Test Time Scaling for Code Generation
Increasing test-time compute for LLMs shows promise across domains but remains underexplored in code generation, despite extensive study in math. In this paper, we propose S*, the first hybrid test-time scaling framework that substantially improves the coverage and selection accuracy of generated code. S* extends the existing parallel scaling paradigm with sequential scaling to push performance boundaries. It further leverages a novel selection mechanism that adaptively generates distinguishing inputs for pairwise comparison, combined with execution-grounded information to robustly identify correct solutions. We evaluate across 12 Large Language Models and Large Reasoning Model and show: (1) S* consistently improves performance across model families and sizes, enabling a 3B model to outperform GPT-4o-mini; (2) S* enables non-reasoning models to surpass reasoning models - GPT-4o-mini with S* outperforms o1-preview by 3.7% on LiveCodeBench; (3) S* further boosts state-of-the-art reasoning models - DeepSeek-R1-Distill-Qwen-32B with S* achieves 85.7% on LiveCodeBench, approaching o1 (high) at 88.5%. Code will be available under https://github.com/NovaSky-AI/SkyThought.
Scaling over Scaling: Exploring Test-Time Scaling Pareto in Large Reasoning Models
Large reasoning models (LRMs) have exhibited the capacity of enhancing reasoning performance via internal test-time scaling. Building upon this, a promising direction is to further scale test-time compute to unlock even greater reasoning capabilities. However, as we push these scaling boundaries, systematically understanding the practical limits and achieving optimal resource allocation becomes a critical challenge. In this paper, we investigate the scaling Pareto of test-time scaling and introduce the Test-Time Scaling Performance Model (TTSPM). We theoretically analyze two fundamental paradigms for such extended scaling, parallel scaling and sequential scaling, from a probabilistic modeling perspective. Our primary contribution is the derivation of the saturation point on the scaling budget for both strategies, identifying thresholds beyond which additional computation yields diminishing returns. Remarkably, despite their distinct mechanisms, both paradigms converge to a unified mathematical structure in their upper bounds. We empirically validate our theoretical findings on challenging reasoning benchmarks, including AIME, MATH-500, and GPQA, demonstrating the practical utility of these bounds for test-time resource allocation. We hope that this work provides insights into the cost-benefit trade-offs of test-time scaling, guiding the development of more resource-efficient inference strategies for large reasoning models.
Reasoning Models Can Be Effective Without Thinking
Recent LLMs have significantly improved reasoning capabilities, primarily by including an explicit, lengthy Thinking process as part of generation. In this paper, we question whether this explicit thinking is necessary. Using the state-of-the-art DeepSeek-R1-Distill-Qwen, we find that bypassing the thinking process via simple prompting, denoted as NoThinking, can be surprisingly effective. When controlling for the number of tokens, NoThinking outperforms Thinking across a diverse set of seven challenging reasoning datasets--including mathematical problem solving, formal theorem proving, and coding--especially in low-budget settings, e.g., 51.3 vs. 28.9 on ACM 23 with 700 tokens. Notably, the performance of NoThinking becomes more competitive with pass@k as k increases. Building on this observation, we demonstrate that a parallel scaling approach that uses NoThinking to generate N outputs independently and aggregates them is highly effective. For aggregation, we use task-specific verifiers when available, or we apply simple best-of-N strategies such as confidence-based selection. Our method outperforms a range of baselines with similar latency using Thinking, and is comparable to Thinking with significantly longer latency (up to 9x). Together, our research encourages a reconsideration of the necessity of lengthy thinking processes, while also establishing a competitive reference for achieving strong reasoning performance in low-budget settings or at low latency using parallel scaling.
ProSper -- A Python Library for Probabilistic Sparse Coding with Non-Standard Priors and Superpositions
ProSper is a python library containing probabilistic algorithms to learn dictionaries. Given a set of data points, the implemented algorithms seek to learn the elementary components that have generated the data. The library widens the scope of dictionary learning approaches beyond implementations of standard approaches such as ICA, NMF or standard L1 sparse coding. The implemented algorithms are especially well-suited in cases when data consist of components that combine non-linearly and/or for data requiring flexible prior distributions. Furthermore, the implemented algorithms go beyond standard approaches by inferring prior and noise parameters of the data, and they provide rich a-posteriori approximations for inference. The library is designed to be extendable and it currently includes: Binary Sparse Coding (BSC), Ternary Sparse Coding (TSC), Discrete Sparse Coding (DSC), Maximal Causes Analysis (MCA), Maximum Magnitude Causes Analysis (MMCA), and Gaussian Sparse Coding (GSC, a recent spike-and-slab sparse coding approach). The algorithms are scalable due to a combination of variational approximations and parallelization. Implementations of all algorithms allow for parallel execution on multiple CPUs and multiple machines for medium to large-scale applications. Typical large-scale runs of the algorithms can use hundreds of CPUs to learn hundreds of dictionary elements from data with tens of millions of floating-point numbers such that models with several hundred thousand parameters can be optimized. The library is designed to have minimal dependencies and to be easy to use. It targets users of dictionary learning algorithms and Machine Learning researchers.
Shortcut-connected Expert Parallelism for Accelerating Mixture-of-Experts
Expert parallelism has been introduced as a strategy to distribute the computational workload of sparsely-gated mixture-of-experts (MoE) models across multiple computing devices, facilitating the execution of these increasingly large-scale models. However, the All-to-All communication intrinsic to expert parallelism constitutes a significant overhead, diminishing the MoE models' efficiency. Current optimization approaches offer some relief, yet they are constrained by the sequential interdependence of communication and computation operations. To address this limitation, we present a novel shortcut-connected MoE architecture with overlapping parallel strategy, designated as ScMoE, which effectively decouples communication from its conventional sequence, allowing for a substantial overlap of 70% to 100% with computation. When compared with the prevalent top-2 MoE architecture, ScMoE demonstrates training speed improvements of 30% and 11%, and inference improvements of 40% and 15%, in our PCIe and NVLink hardware environments, respectively, where communication constitutes 60% and 15% of the total MoE time consumption. On the other hand, extensive experiments and theoretical analyses indicate that ScMoE not only achieves comparable but in some instances surpasses the model quality of existing approaches in vision and language tasks.
Break the Sequential Dependency of LLM Inference Using Lookahead Decoding
Autoregressive decoding of large language models (LLMs) is memory bandwidth bounded, resulting in high latency and significant wastes of the parallel processing power of modern accelerators. Existing methods for accelerating LLM decoding often require a draft model (e.g., speculative decoding), which is nontrivial to obtain and unable to generalize. In this paper, we introduce Lookahead decoding, an exact, parallel decoding algorithm that accelerates LLM decoding without needing auxiliary models or data stores. It allows trading per-step log(FLOPs) to reduce the number of total decoding steps, is more parallelizable on single or multiple modern accelerators, and is compatible with concurrent memory-efficient attention (e.g., FlashAttention). Our implementation of Lookahead decoding can speed up autoregressive decoding by up to 1.8x on MT-bench and 4x with strong scaling on multiple GPUs in code completion tasks. Our code is avialable at https://github.com/hao-ai-lab/LookaheadDecoding
PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization
Pipeline parallelism (PP) is widely used for training large language models (LLMs), yet its scalability is often constrained by high activation memory consumption as the number of in-flight microbatches grows with the degree of PP. In this paper, we focus on addressing this challenge by leveraging the under-explored memory offload strategy in PP. With empirical study, we discover that in the majority of standard configurations, at least half, and potentially all, of the activations can be offloaded with negligible overhead. In the cases where full overload is not possible, we introduce a novel selective offload strategy that decreases peak activation memory in a better-than-linear manner. Furthermore, we integrate memory offload with other techniques to jointly consider overall throughput and memory limitation. Our experiments proves that the per-device activation memory effectively reduces with the total number of stages, making PP a stronger alternative than TP, offering up to a 19\% acceleration with even lower memory consumption. The implementation is open-sourced at https://github.com/sail-sg/zero-bubble-pipeline-parallelism{this url}.
A Unified Sequence Parallelism Approach for Long Context Generative AI
Sequence parallelism (SP), which divides the sequence dimension of input tensors across multiple computational devices, is becoming key to unlocking the long-context capabilities of generative AI models. This paper investigates the state-of-the-art SP approaches, i.e. DeepSpeed-Ulysses and Ring-Attention, and proposes a unified SP approach, which is more robust to transformer model architectures and network hardware topology. This paper compares the communication and memory cost of SP and existing parallelism, including data/tensor/zero/expert/pipeline parallelism, and discusses the best practices for designing hybrid 4D parallelism involving SP. We achieved 86% MFU on two 8xA800 nodes using SP for sequence length 208K for the LLAMA3-8B model. Our code is publicly available on https://github.com/feifeibear/long-context-attention.
Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms
Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids clustering. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not exist for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains and applications. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm that achieve an O(k)-fold speedup in the second ("SWAP") phase of the algorithm, but will still find the same results as the original PAM algorithm. If we relax the choice of swaps performed (while retaining comparable quality), we can further accelerate the algorithm by eagerly performing additional swaps in each iteration. With the substantially faster SWAP, we can now explore faster initialization strategies, because (i) the classic ("BUILD") initialization now becomes the bottleneck, and (ii) our swap is fast enough to compensate for worse starting conditions. We also show how the CLARA and CLARANS algorithms benefit from the proposed modifications. While we do not study the parallelization of our approach in this work, it can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100,200, we observed a 458x respectively 1191x speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets, and in particular to higher k.
Improved vectorization of OpenCV algorithms for RISC-V CPUs
The development of an open and free RISC-V architecture is of great interest for a wide range of areas, including high-performance computing and numerical simulation in mathematics, physics, chemistry and other problem domains. In this paper, we discuss the possibilities of accelerating computations on available RISC-V processors by improving the vectorization of several computer vision and machine learning algorithms in the widely used OpenCV library. It is shown that improved vectorization speeds up computations on existing prototypes of RISC-V devices by tens of percent.
PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management
The pre-trained model (PTM) is revolutionizing Artificial Intelligence (AI) technology. However, the hardware requirement of PTM training is prohibitively high, making it a game for a small proportion of people. Therefore, we proposed PatrickStar system to lower the hardware requirements of PTMs and make them accessible to everyone. PatrickStar uses the CPU-GPU heterogeneous memory space to store the model data. Different from existing works, we organize the model data in memory chunks and dynamically distribute them in the heterogeneous memory. Guided by the runtime memory statistics collected in a warm-up iteration, chunks are orchestrated efficiently in heterogeneous memory and generate lower CPU-GPU data transmission volume and higher bandwidth utilization. Symbiosis with the Zero Redundancy Optimizer, PatrickStar scales to multiple GPUs on multiple nodes. % using data parallelism. The system can train tasks on bigger models and larger batch sizes, which cannot be accomplished by existing works. Experimental results show that PatrickStar extends model scales 2.27 and 2.5 times of DeepSpeed, and consistently exhibits significantly higher execution speed. PatricStar also successfully runs the 175B GPT3 training task on a 32 GPU cluster. Our code is publicly available at https://github.com/Tencent/PatrickStar.
Asynchronous Local-SGD Training for Language Modeling
Local stochastic gradient descent (Local-SGD), also referred to as federated averaging, is an approach to distributed optimization where each device performs more than one SGD update per communication. This work presents an empirical study of {\it asynchronous} Local-SGD for training language models; that is, each worker updates the global parameters as soon as it has finished its SGD steps. We conduct a comprehensive investigation by examining how worker hardware heterogeneity, model size, number of workers, and optimizer could impact the learning performance. We find that with naive implementations, asynchronous Local-SGD takes more iterations to converge than its synchronous counterpart despite updating the (global) model parameters more frequently. We identify momentum acceleration on the global parameters when worker gradients are stale as a key challenge. We propose a novel method that utilizes a delayed Nesterov momentum update and adjusts the workers' local training steps based on their computation speed. This approach, evaluated with models up to 150M parameters on the C4 dataset, matches the performance of synchronous Local-SGD in terms of perplexity per update step, and significantly surpasses it in terms of wall clock time.
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
Scaling up deep neural network capacity has been known as an effective approach to improving model quality for several different machine learning tasks. In many cases, increasing model capacity beyond the memory limit of a single accelerator has required developing special algorithms or infrastructure. These solutions are often architecture-specific and do not transfer to other tasks. To address the need for efficient and task-independent model parallelism, we introduce GPipe, a pipeline parallelism library that allows scaling any network that can be expressed as a sequence of layers. By pipelining different sub-sequences of layers on separate accelerators, GPipe provides the flexibility of scaling a variety of different networks to gigantic sizes efficiently. Moreover, GPipe utilizes a novel batch-splitting pipelining algorithm, resulting in almost linear speedup when a model is partitioned across multiple accelerators. We demonstrate the advantages of GPipe by training large-scale neural networks on two different tasks with distinct network architectures: (i) Image Classification: We train a 557-million-parameter AmoebaNet model and attain a top-1 accuracy of 84.4% on ImageNet-2012, (ii) Multilingual Neural Machine Translation: We train a single 6-billion-parameter, 128-layer Transformer model on a corpus spanning over 100 languages and achieve better quality than all bilingual models.
FAVANO: Federated AVeraging with Asynchronous NOdes
In this paper, we propose a novel centralized Asynchronous Federated Learning (FL) framework, FAVANO, for training Deep Neural Networks (DNNs) in resource-constrained environments. Despite its popularity, ``classical'' federated learning faces the increasingly difficult task of scaling synchronous communication over large wireless networks. Moreover, clients typically have different computing resources and therefore computing speed, which can lead to a significant bias (in favor of ``fast'' clients) when the updates are asynchronous. Therefore, practical deployment of FL requires to handle users with strongly varying computing speed in communication/resource constrained setting. We provide convergence guarantees for FAVANO in a smooth, non-convex environment and carefully compare the obtained convergence guarantees with existing bounds, when they are available. Experimental results show that the FAVANO algorithm outperforms current methods on standard benchmarks.
TP-Aware Dequantization
In this paper, we present a novel method that reduces model inference latency during distributed deployment of Large Language Models (LLMs). Our contribution is an optimized inference deployment scheme that address the current limitations of state-of-the-art quantization kernels when used in conjunction with Tensor Parallel (TP). Our method preserves data locality in GPU memory access patterns and exploits a priori knowledge of TP to reduce global communication. We demonstrate an up to 1.81x speedup over existing methods for Llama-70B and up to 1.78x speedup for IBM WatsonX's Granite-20B MLP layer problem sizes on A100 and H100 NVIDIA DGX Systems for a variety of TP settings.
DiLoCoX: A Low-Communication Large-Scale Training Framework for Decentralized Cluster
The distributed training of foundation models, particularly large language models (LLMs), demands a high level of communication. Consequently, it is highly dependent on a centralized cluster with fast and reliable interconnects. Can we conduct training on slow networks and thereby unleash the power of decentralized clusters when dealing with models exceeding 100 billion parameters? In this paper, we propose DiLoCoX, a low-communication large-scale decentralized cluster training framework. It combines Pipeline Parallelism with Dual Optimizer Policy, One-Step-Delay Overlap of Communication and Local Training, and an Adaptive Gradient Compression Scheme. This combination significantly improves the scale of parameters and the speed of model pre-training. We justify the benefits of one-step-delay overlap of communication and local training, as well as the adaptive gradient compression scheme, through a theoretical analysis of convergence. Empirically, we demonstrate that DiLoCoX is capable of pre-training a 107B foundation model over a 1Gbps network. Compared to vanilla AllReduce, DiLoCoX can achieve a 357x speedup in distributed training while maintaining negligible degradation in model convergence. To the best of our knowledge, this is the first decentralized training framework successfully applied to models with over 100 billion parameters.
LoongTrain: Efficient Training of Long-Sequence LLMs with Head-Context Parallelism
Efficiently training LLMs with long sequences is important yet challenged by the massive computation and memory requirements. Sequence parallelism has been proposed to tackle these problems, but existing methods suffer from scalability or efficiency issues. We propose LoongTrain, a novel system to efficiently train LLMs with long sequences at scale. The core of LoongTrain is the 2D-Attention mechanism, which combines both head-parallel and context-parallel techniques to break the scalability constraints while maintaining efficiency. We introduce Double-Ring-Attention and analyze the performance of device placement strategies to further speed up training. We implement LoongTrain with the hybrid ZeRO and Selective Checkpoint++ techniques. Experiment results show that LoongTrain outperforms state-of-the-art baselines, i.e., DeepSpeed-Ulysses and Megatron Context Parallelism, in both end-to-end training speed and scalability, and improves Model FLOPs Utilization (MFU) by up to 2.88x.
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Deep learning thrives with large neural networks and large datasets. However, larger networks and larger datasets result in longer training times that impede research and development progress. Distributed synchronous SGD offers a potential solution to this problem by dividing SGD minibatches over a pool of parallel workers. Yet to make this scheme efficient, the per-worker workload must be large, which implies nontrivial growth in the SGD minibatch size. In this paper, we empirically show that on the ImageNet dataset large minibatches cause optimization difficulties, but when these are addressed the trained networks exhibit good generalization. Specifically, we show no loss of accuracy when training with large minibatch sizes up to 8192 images. To achieve this result, we adopt a hyper-parameter-free linear scaling rule for adjusting learning rates as a function of minibatch size and develop a new warmup scheme that overcomes optimization challenges early in training. With these simple techniques, our Caffe2-based system trains ResNet-50 with a minibatch size of 8192 on 256 GPUs in one hour, while matching small minibatch accuracy. Using commodity hardware, our implementation achieves ~90% scaling efficiency when moving from 8 to 256 GPUs. Our findings enable training visual recognition models on internet-scale data with high efficiency.
Ladder-residual: parallelism-aware architecture for accelerating large model inference with communication overlapping
Large language model inference is both memory-intensive and time-consuming, often requiring distributed algorithms to efficiently scale. Various model parallelism strategies are used in multi-gpu training and inference to partition computation across multiple devices, reducing memory load and computation time. However, using model parallelism necessitates communication of information between GPUs, which has been a major bottleneck and limits the gains obtained by scaling up the number of devices. We introduce Ladder Residual, a simple architectural modification applicable to all residual-based models that enables straightforward overlapping that effectively hides the latency of communication. Our insight is that in addition to systems optimization, one can also redesign the model architecture to decouple communication from computation. While Ladder Residual can allow communication-computation decoupling in conventional parallelism patterns, we focus on Tensor Parallelism in this paper, which is particularly bottlenecked by its heavy communication. For a Transformer model with 70B parameters, applying Ladder Residual to all its layers can achieve 30% end-to-end wall clock speed up at inference time with TP sharding over 8 devices. We refer the resulting Transformer model as the Ladder Transformer. We train a 1B and 3B Ladder Transformer from scratch and observe comparable performance to a standard dense transformer baseline. We also show that it is possible to convert parts of the Llama-3.1 8B model to our Ladder Residual architecture with minimal accuracy degradation by only retraining for 3B tokens.
DeMo: Decoupled Momentum Optimization
Training large neural networks typically requires sharing gradients between accelerators through specialized high-speed interconnects. Drawing from the signal processing principles of frequency decomposition and energy compaction, we demonstrate that synchronizing full optimizer states and model parameters during training is unnecessary. By decoupling momentum updates and allowing controlled divergence in optimizer states across accelerators, we achieve improved convergence compared to state-of-the-art optimizers. We introduce {De}coupled {Mo}mentum (DeMo), a fused optimizer and data parallel algorithm that reduces inter-accelerator communication requirements by several orders of magnitude. This enables training of large neural networks even with limited network bandwidth and heterogeneous hardware. Our method is topology-agnostic and architecture-independent and supports scalable clock-synchronous distributed training with negligible compute and memory overhead. Empirical results show that models trained with DeMo match or exceed the performance of equivalent models trained with AdamW, while eliminating the need for high-speed interconnects when pre-training large scale foundation models. An open source reference PyTorch implementation is published on GitHub at https://github.com/bloc97/DeMo
F-coref: Fast, Accurate and Easy to Use Coreference Resolution
We introduce fastcoref, a python package for fast, accurate, and easy-to-use English coreference resolution. The package is pip-installable, and allows two modes: an accurate mode based on the LingMess architecture, providing state-of-the-art coreference accuracy, and a substantially faster model, F-coref, which is the focus of this work. F-coref allows to process 2.8K OntoNotes documents in 25 seconds on a V100 GPU (compared to 6 minutes for the LingMess model, and to 12 minutes of the popular AllenNLP coreference model) with only a modest drop in accuracy. The fast speed is achieved through a combination of distillation of a compact model from the LingMess model, and an efficient batching implementation using a technique we call leftover batching. Our code is available at https://github.com/shon-otmazgin/fastcoref
Benchmarking Neural Network Training Algorithms
Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.
FastAttention: Extend FlashAttention2 to NPUs and Low-resource GPUs
FlashAttention series has been widely applied in the inference of large language models (LLMs). However, FlashAttention series only supports the high-level GPU architectures, e.g., Ampere and Hopper. At present, FlashAttention series is not easily transferrable to NPUs and low-resource GPUs. Moreover, FlashAttention series is inefficient for multi- NPUs or GPUs inference scenarios. In this work, we propose FastAttention which pioneers the adaptation of FlashAttention series for NPUs and low-resource GPUs to boost LLM inference efficiency. Specifically, we take Ascend NPUs and Volta-based GPUs as representatives for designing our FastAttention. We migrate FlashAttention series to Ascend NPUs by proposing a novel two-level tiling strategy for runtime speedup, tiling-mask strategy for memory saving and the tiling-AllReduce strategy for reducing communication overhead, respectively. Besides, we adapt FlashAttention for Volta-based GPUs by redesigning the operands layout in shared memory and introducing a simple yet effective CPU-GPU cooperative strategy for efficient memory utilization. On Ascend NPUs, our FastAttention can achieve a 10.7times speedup compared to the standard attention implementation. Llama-7B within FastAttention reaches up to 5.16times higher throughput than within the standard attention. On Volta architecture GPUs, FastAttention yields 1.43times speedup compared to its equivalents in xformers. Pangu-38B within FastAttention brings 1.46times end-to-end speedup using FasterTransformer. Coupled with the propose CPU-GPU cooperative strategy, FastAttention supports a maximal input length of 256K on 8 V100 GPUs. All the codes will be made available soon.
Accelerating Diffusion LLMs via Adaptive Parallel Decoding
The generation speed of LLMs are bottlenecked by autoregressive decoding, where tokens are predicted sequentially one by one. Alternatively, diffusion large language models (dLLMs) theoretically allow for parallel token generation, but in practice struggle to achieve the speed of autoregressive models without significantly sacrificing quality. We therefore introduce adaptive parallel decoding (APD), a novel method that dynamically adjusts the number of tokens sampled in parallel. We achieve this by defining a multiplicative mixture between the dLLM marginal probabilities and the joint probability of sequences under a small auxiliary autoregressive model. This inverts the standard setup of speculative decoding, where the goal is to sample from a large autoregressive verifier by drafting from a smaller model. We further optimize APD by enabling KV caching and limiting the size of the masked input. Altogether, our method puts forward three tunable parameters to flexibly tradeoff throughput and quality. We show that APD provides markedly higher throughput with minimal quality degradations on downstream benchmarks.
Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks
To design fast neural networks, many works have been focusing on reducing the number of floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does not necessarily lead to a similar level of reduction in latency. This mainly stems from inefficiently low floating-point operations per second (FLOPS). To achieve faster networks, we revisit popular operators and demonstrate that such low FLOPS is mainly due to frequent memory access of the operators, especially the depthwise convolution. We hence propose a novel partial convolution (PConv) that extracts spatial features more efficiently, by cutting down redundant computation and memory access simultaneously. Building upon our PConv, we further propose FasterNet, a new family of neural networks, which attains substantially higher running speed than others on a wide range of devices, without compromising on accuracy for various vision tasks. For example, on ImageNet-1k, our tiny FasterNet-T0 is 2.8times, 3.3times, and 2.4times faster than MobileViT-XXS on GPU, CPU, and ARM processors, respectively, while being 2.9% more accurate. Our large FasterNet-L achieves impressive 83.5% top-1 accuracy, on par with the emerging Swin-B, while having 36% higher inference throughput on GPU, as well as saving 37% compute time on CPU. Code is available at https://github.com/JierunChen/FasterNet.
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
Large deep learning models offer significant accuracy gains, but training billions to trillions of parameters is challenging. Existing solutions such as data and model parallelisms exhibit fundamental limitations to fit these models into limited device memory, while obtaining computation, communication and development efficiency. We develop a novel solution, Zero Redundancy Optimizer (ZeRO), to optimize memory, vastly improving training speed while increasing the model size that can be efficiently trained. ZeRO eliminates memory redundancies in data- and model-parallel training while retaining low communication volume and high computational granularity, allowing us to scale the model size proportional to the number of devices with sustained high efficiency. Our analysis on memory requirements and communication volume demonstrates: ZeRO has the potential to scale beyond 1 Trillion parameters using today's hardware. We implement and evaluate ZeRO: it trains large models of over 100B parameter with super-linear speedup on 400 GPUs, achieving throughput of 15 Petaflops. This represents an 8x increase in model size and 10x increase in achievable performance over state-of-the-art. In terms of usability, ZeRO can train large models of up to 13B parameters (e.g., larger than Megatron GPT 8.3B and T5 11B) without requiring model parallelism which is harder for scientists to apply. Last but not the least, researchers have used the system breakthroughs of ZeRO to create the world's largest language model (Turing-NLG, 17B parameters) with record breaking accuracy.
SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations
Knowledge graph (KG) learning offers a powerful framework for generating new knowledge and making inferences. Training KG embedding can take a significantly long time, especially for larger datasets. Our analysis shows that the gradient computation of embedding is one of the dominant functions in the translation-based KG embedding training loop. We address this issue by replacing the core embedding computation with SpMM (Sparse-Dense Matrix Multiplication) kernels. This allows us to unify multiple scatter (and gather) operations as a single operation, reducing training time and memory usage. We create a general framework for training KG models using sparse kernels and implement four models, namely TransE, TransR, TransH, and TorusE. Our sparse implementations exhibit up to 5.3x speedup on the CPU and up to 4.2x speedup on the GPU with a significantly low GPU memory footprint. The speedups are consistent across large and small datasets for a given model. Our proposed sparse approach can be extended to accelerate other translation-based (such as TransC, TransM, etc.) and non-translational (such as DistMult, ComplEx, RotatE, etc.) models as well. An implementation of the SpTransX framework is publicly available as a Python package in https://github.com/HipGraph/SpTransX.
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
Neural networks have shown great potential in accelerating the solution of partial differential equations (PDEs). Recently, there has been a growing interest in introducing physics constraints into training neural PDE solvers to reduce the use of costly data and improve the generalization ability. However, these physics constraints, based on certain finite dimensional approximations over the function space, must resolve the smallest scaled physics to ensure the accuracy and stability of the simulation, resulting in high computational costs from large input, output, and neural networks. This paper proposes a general acceleration methodology called NeuralStagger by spatially and temporally decomposing the original learning tasks into several coarser-resolution subtasks. We define a coarse-resolution neural solver for each subtask, which requires fewer computational resources, and jointly train them with the vanilla physics-constrained loss by simply arranging their outputs to reconstruct the original solution. Due to the perfect parallelism between them, the solution is achieved as fast as a coarse-resolution neural solver. In addition, the trained solvers bring the flexibility of simulating with multiple levels of resolution. We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations, which leads to an additional 10sim100times speed-up. Moreover, the experiment also shows that the learned model could be well used for optimal control.
Compact Neural Graphics Primitives with Learned Hash Probing
Neural graphics primitives are faster and achieve higher quality when their neural networks are augmented by spatial data structures that hold trainable features arranged in a grid. However, existing feature grids either come with a large memory footprint (dense or factorized grids, trees, and hash tables) or slow performance (index learning and vector quantization). In this paper, we show that a hash table with learned probes has neither disadvantage, resulting in a favorable combination of size and speed. Inference is faster than unprobed hash tables at equal quality while training is only 1.2-2.6x slower, significantly outperforming prior index learning approaches. We arrive at this formulation by casting all feature grids into a common framework: they each correspond to a lookup function that indexes into a table of feature vectors. In this framework, the lookup functions of existing data structures can be combined by simple arithmetic combinations of their indices, resulting in Pareto optimal compression and speed.
Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM
Large language models have led to state-of-the-art accuracies across a range of tasks. However, training these models efficiently is challenging for two reasons: a) GPU memory capacity is limited, making it impossible to fit large models on even a multi-GPU server, and b) the number of compute operations required to train these models can result in unrealistically long training times. Consequently, new methods of model parallelism such as tensor and pipeline parallelism have been proposed. Unfortunately, naive usage of these methods leads to fundamental scaling issues at thousands of GPUs, e.g., due to expensive cross-node communication or devices spending significant time waiting on other devices to make progress. In this paper, we show how different types of parallelism methods (tensor, pipeline, and data parallelism) can be composed to scale to thousands of GPUs and models with trillions of parameters. We survey techniques for pipeline parallelism and propose a novel interleaved pipeline parallelism schedule that can improve throughput by 10+% with memory footprint comparable to existing approaches. We quantitatively study the trade-offs between tensor, pipeline, and data parallelism, and provide intuition as to how to configure distributed training of a large model. Our approach allows us to perform training iterations on a model with 1 trillion parameters at 502 petaFLOP/s on 3072 GPUs with achieved per-GPU throughput of 52% of theoretical peak. Our code is open sourced at https://github.com/nvidia/megatron-lm.
PARD: Accelerating LLM Inference with Low-Cost PARallel Draft Model Adaptation
The autoregressive nature of large language models (LLMs) limits inference speed. Each forward pass generates only a single token and is often bottlenecked by memory bandwidth. Speculative decoding alleviates this issue using a draft-then-verify approach to accelerate token generation. However, the overhead introduced during the draft phase and the training cost of the draft model limit the efficiency and adaptability of speculative decoding. In this work, we introduce PARallel Draft (PARD), a novel speculative decoding method that enables low-cost adaptation of autoregressive draft models into parallel draft models. PARD enhances inference efficiency by predicting multiple future tokens in a single forward pass of the draft phase, and incorporates a conditional drop token method to accelerate training. Its target-independence property allows a single draft model to be applied to an entire family of different models, minimizing the adaptation cost. Our proposed conditional drop token method can improves draft model training efficiency by 3x. On our optimized inference framework, PARD accelerates LLaMA3.1-8B inference by 4.08x, achieving 311.5 tokens per second.
Co-design Hardware and Algorithm for Vector Search
Vector search has emerged as the foundation for large-scale information retrieval and machine learning systems, with search engines like Google and Bing processing tens of thousands of queries per second on petabyte-scale document datasets by evaluating vector similarities between encoded query texts and web documents. As performance demands for vector search systems surge, accelerated hardware offers a promising solution in the post-Moore's Law era. We introduce FANNS, an end-to-end and scalable vector search framework on FPGAs. Given a user-provided recall requirement on a dataset and a hardware resource budget, FANNS automatically co-designs hardware and algorithm, subsequently generating the corresponding accelerator. The framework also supports scale-out by incorporating a hardware TCP/IP stack in the accelerator. FANNS attains up to 23.0times and 37.2times speedup compared to FPGA and CPU baselines, respectively, and demonstrates superior scalability to GPUs, achieving 5.5times and 7.6times speedup in median and 95th percentile (P95) latency within an eight-accelerator configuration. The remarkable performance of FANNS lays a robust groundwork for future FPGA integration in data centers and AI supercomputers.
Hecate: Unlocking Efficient Sparse Model Training via Fully Sharded Sparse Data Parallelism
Mixture-of-Experts (MoE) has emerged as a promising sparse paradigm for scaling up pre-trained models (PTMs) with remarkable cost-effectiveness. However, the dynamic nature of MoE leads to rapid fluctuations and imbalances in expert loads during training, resulting in significant straggler effects that hinder training performance when using expert parallelism (EP). Existing MoE training systems attempt to mitigate these effects through expert rearrangement strategies, but they face challenges in terms of memory efficiency and timeliness of rearrangement. This paper proposes Fully Sharded Sparse Data Parallelism (FSSDP), an innovative approach that tackles the parallelization of MoE layers and potential straggler effects caused by imbalanced expert loads from a new perspective. FSSDP fully shards the parameters and optimizer states of MoE layers across devices and sparsely materializes MoE parameters from scratch in each iteration with two sparse collectives SparseAllGather and SparseReduceScatter. We build Hecate, a high-performance MoE training system that incorporates FSSDP to fully unlock its potential. Hecate introduces heterogeneous sharding, sparse materialization, and re-materialization techniques to construct flexible and efficient expert placements with low memory and communication overhead. Our evaluation reveals that Hecate achieves up to 3.54x speedup compared over state-of-the-art MoE training systems and consistently demonstrates improvements across model architectures and hardware environments.
Scaling Speculative Decoding with Lookahead Reasoning
Reasoning models excel by generating long chain-of-thoughts, but decoding the resulting thousands of tokens is slow. Token-level speculative decoding (SD) helps, but its benefit is capped, because the chance that an entire gamma-token guess is correct falls exponentially as gamma grows. This means allocating more compute for longer token drafts faces an algorithmic ceiling -- making the speedup modest and hardware-agnostic. We raise this ceiling with Lookahead Reasoning, which exploits a second, step-level layer of parallelism. Our key insight is that reasoning models generate step-by-step, and each step needs only to be semantically correct, not exact token matching. In Lookahead Reasoning, a lightweight draft model proposes several future steps; the target model expands each proposal in one batched pass, and a verifier keeps semantically correct steps while letting the target regenerate any that fail. Token-level SD still operates within each reasoning step, so the two layers of parallelism multiply. We show Lookahead Reasoning lifts the peak speedup of SD both theoretically and empirically. Across GSM8K, AIME, and other benchmarks, Lookahead Reasoning improves the speedup of SD from 1.4x to 2.1x while preserving answer quality, and its speedup scales better with additional GPU throughput. Our code is available at https://github.com/hao-ai-lab/LookaheadReasoning
Closing the Performance Gap with Modern C++
On the way to Exascale, programmers face the increasing challenge of having to support multiple hardware architectures from the same code base. At the same time, portability of code and performance are increasingly difficult to achieve as hardware architectures are becoming more and more diverse. Today's heterogeneous systems often include two or more completely distinct and incompatible hardware execution models, such as GPGPU's, SIMD vector units, and general purpose cores which conventionally have to be programmed using separate tool chains representing non-overlapping programming models. The recent revival of interest in the industry and the wider community for the C++ language has spurred a remarkable amount of standardization proposals and technical specifications in the arena of concurrency and parallelism. This recently includes an increasing amount of discussion around the need for a uniform, higher-level abstraction and programming model for parallelism in the C++ standard targeting heterogeneous and distributed computing. Such an abstraction should perfectly blend with existing, already standardized language and library features, but should also be generic enough to support future hardware developments. In this paper, we present the results from developing such a higher-level programming abstraction for parallelism in C++ which aims at enabling code and performance portability over a wide range of architectures and for various types of parallelism. We present and compare performance data obtained from running the well-known STREAM benchmark ported to our higher level C++ abstraction with the corresponding results from running it natively. We show that our abstractions enable performance at least as good as the comparable base-line benchmarks while providing a uniform programming API on all compared target architectures.
PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel
It is widely acknowledged that large models have the potential to deliver superior performance across a broad range of domains. Despite the remarkable progress made in the field of machine learning systems research, which has enabled the development and exploration of large models, such abilities remain confined to a small group of advanced users and industry leaders, resulting in an implicit technical barrier for the wider community to access and leverage these technologies. In this paper, we introduce PyTorch Fully Sharded Data Parallel (FSDP) as an industry-grade solution for large model training. FSDP has been closely co-designed with several key PyTorch core components including Tensor implementation, dispatcher system, and CUDA memory caching allocator, to provide non-intrusive user experiences and high training efficiency. Additionally, FSDP natively incorporates a range of techniques and settings to optimize resource utilization across a variety of hardware configurations. The experimental results demonstrate that FSDP is capable of achieving comparable performance to Distributed Data Parallel while providing support for significantly larger models with near-linear scalability in terms of TFLOPS.
EnergonAI: An Inference System for 10-100 Billion Parameter Transformer Models
Large transformer models display promising performance on a wide range of natural language processing (NLP) tasks. Although the AI community has expanded the model scale to the trillion parameter level, the practical deployment of 10-100 billion parameter models is still uncertain due to the latency, throughput, and memory constraints. In this paper, we proposed EnergonAI to solve the challenges of the efficient deployment of 10-100 billion parameter transformer models on single- or multi-GPU systems. EnergonAI adopts a hierarchy-controller system architecture to coordinate multiple devices and efficiently support different parallel patterns. It delegates the execution of sub-models to multiple workers in the single-controller style and applies tensor parallelism and pipeline parallelism among the workers in a multi-controller style. Upon the novel architecture, we propose three techniques, i.e. non-blocking pipeline parallelism, distributed redundant computation elimination, and peer memory pooling. EnergonAI enables the users to program complex parallel code the same as a serial one. Compared with the FasterTransformer, we have proven that EnergonAI has superior performance on latency and throughput. In our experiments, EnergonAI can achieve 37% latency reduction in tensor parallelism, 10% scalability improvement in pipeline parallelism, and it improves the model scale inferred on a single GPU by using a larger heterogeneous memory space at cost of limited performance reduction.
Fault-Tolerant Strassen-Like Matrix Multiplication
In this study, we propose a simple method for fault-tolerant Strassen-like matrix multiplications. The proposed method is based on using two distinct Strassen-like algorithms instead of replicating a given one. We have realized that using two different algorithms, new check relations arise resulting in more local computations. These local computations are found using computer aided search. To improve performance, special parity (extra) sub-matrix multiplications (PSMMs) are generated (two of them) at the expense of increasing communication/computation cost of the system. Our preliminary results demonstrate that the proposed method outperforms a Strassen-like algorithm with two copies and secures a very close performance to three copy version using only 2 PSMMs, reducing the total number of compute nodes by around 24\% i.e., from 21 to 16.
UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory
Fine-tuning pre-trained models has emerged as a powerful technique in numerous domains, owing to its ability to leverage enormous pre-existing knowledge and achieve remarkable performance on downstream tasks. However, updating the parameters of entire networks is computationally intensive. Although state-of-the-art parameter-efficient transfer learning (PETL) methods significantly reduce the trainable parameters and storage demand, almost all of them still need to back-propagate the gradients through large pre-trained networks. This memory-extensive characteristic extremely limits the applicability of PETL methods in real-world scenarios. To this end, we propose a new memory-efficient PETL strategy, dubbed Universal Parallel Tuning (UniPT). Specifically, we facilitate the transfer process via a lightweight learnable parallel network, which consists of two modules: 1) A parallel interaction module that decouples the inherently sequential connections and processes the intermediate activations detachedly of the pre-trained network. 2) A confidence aggregation module that learns optimal strategies adaptively for integrating cross-layer features. We evaluate UniPT with different backbones (e.g., VSEinfty, CLIP4Clip, Clip-ViL, and MDETR) on five challenging vision-and-language tasks (i.e., image-text retrieval, video-text retrieval, visual question answering, compositional question answering, and visual grounding). Extensive ablations on ten datasets have validated that our UniPT can not only dramatically reduce memory consumption and outperform the best memory-efficient competitor, but also achieve higher performance than existing PETL methods in a low-memory scenario on different architectures. Our code is publicly available at: https://github.com/Paranioar/UniPT.
Splitformer: An improved early-exit architecture for automatic speech recognition on edge devices
The ability to dynamically adjust the computational load of neural models during inference in a resource aware manner is crucial for on-device processing scenarios, characterised by limited and time-varying computational resources. Early-exit architectures represent an elegant and effective solution, since they can process the input with a subset of their layers, exiting at intermediate branches (the upmost layers are hence removed from the model). From a different perspective, for automatic speech recognition applications there are memory-efficient neural architectures that apply variable frame rate analysis, through downsampling/upsampling operations in the middle layers, reducing the overall number of operations and improving significantly the performance on well established benchmarks. One example is the Zipformer. However, these architectures lack the modularity necessary to inject early-exit branches. With the aim of improving the performance in early-exit models, we propose introducing parallel layers in the architecture that process downsampled versions of their inputs. % in conjunction with standard processing layers. We show that in this way the speech recognition performance on standard benchmarks significantly improve, at the cost of a small increase in the overall number of model parameters but without affecting the inference time.
TPI-LLM: Serving 70B-scale LLMs Efficiently on Low-resource Edge Devices
Large model inference is shifting from cloud to edge due to concerns about the privacy of user interaction data. However, edge devices often struggle with limited computing power, memory, and bandwidth, requiring collaboration across multiple devices to run and speed up LLM inference. Pipeline parallelism, the mainstream solution, is inefficient for single-user scenarios, while tensor parallelism struggles with frequent communications. In this paper, we argue that tensor parallelism can be more effective than pipeline on low-resource devices, and present a compute- and memory-efficient tensor parallel inference system, named TPI-LLM, to serve 70B-scale models. TPI-LLM keeps sensitive raw data local in the users' devices and introduces a sliding window memory scheduler to dynamically manage layer weights during inference, with disk I/O latency overlapped with the computation and communication. This allows larger models to run smoothly on memory-limited devices. We analyze the communication bottleneck and find that link latency, not bandwidth, emerges as the main issue, so a star-based allreduce algorithm is implemented. Through extensive experiments on both emulated and real testbeds, TPI-LLM demonstrated over 80% less time-to-first-token and token latency compared to Accelerate, and over 90% compared to Transformers and Galaxy, while cutting the peak memory footprint of Llama 2-70B by 90%, requiring only 3.1 GB of memory for 70B-scale models.
Tandem Transformers for Inference Efficient LLMs
The autoregressive nature of conventional large language models (LLMs) inherently limits inference speed, as tokens are generated sequentially. While speculative and parallel decoding techniques attempt to mitigate this, they face limitations: either relying on less accurate smaller models for generation or failing to fully leverage the base LLM's representations. We introduce a novel architecture, Tandem transformers, to address these issues. This architecture uniquely combines (1) a small autoregressive model and (2) a large model operating in block mode (processing multiple tokens simultaneously). The small model's predictive accuracy is substantially enhanced by granting it attention to the large model's richer representations. On the PaLM2 pretraining dataset, a tandem of PaLM2-Bison and PaLM2-Gecko demonstrates a 3.3% improvement in next-token prediction accuracy over a standalone PaLM2-Gecko, offering a 1.16x speedup compared to a PaLM2-Otter model with comparable downstream performance. We further incorporate the tandem model within the speculative decoding (SPEED) framework where the large model validates tokens from the small model. This ensures that the Tandem of PaLM2-Bison and PaLM2-Gecko achieves substantial speedup (around 1.14x faster than using vanilla PaLM2-Gecko in SPEED) while maintaining identical downstream task accuracy.
Large Batch Training of Convolutional Networks
A common way to speed up training of large convolutional networks is to add computational units. Training is then performed using data-parallel synchronous Stochastic Gradient Descent (SGD) with mini-batch divided between computational units. With an increase in the number of nodes, the batch size grows. But training with large batch size often results in the lower model accuracy. We argue that the current recipe for large batch training (linear learning rate scaling with warm-up) is not general enough and training may diverge. To overcome this optimization difficulties we propose a new training algorithm based on Layer-wise Adaptive Rate Scaling (LARS). Using LARS, we scaled Alexnet up to a batch size of 8K, and Resnet-50 to a batch size of 32K without loss in accuracy.
Putting the Value Back in RL: Better Test-Time Scaling by Unifying LLM Reasoners With Verifiers
Prevalent reinforcement learning~(RL) methods for fine-tuning LLM reasoners, such as GRPO or Leave-one-out PPO, abandon the learned value function in favor of empirically estimated returns. This hinders test-time compute scaling that relies on using the value-function for verification. In this work, we propose RL^V that augments any ``value-free'' RL method by jointly training the LLM as both a reasoner and a generative verifier using RL-generated data, adding verification capabilities without significant overhead. Empirically, RL^V boosts MATH accuracy by over 20\% with parallel sampling and enables 8-32times efficient test-time compute scaling compared to the base RL method. RL^V also exhibits strong generalization capabilities for both easy-to-hard and out-of-domain tasks. Furthermore, RL^V achieves 1.2-1.6times higher performance when jointly scaling parallel and sequential test-time compute with a long reasoning R1 model.
ETS: Efficient Tree Search for Inference-Time Scaling
Test-time compute scaling has emerged as a new axis along which to improve model accuracy, where additional computation is used at inference time to allow the model to think longer for more challenging problems. One promising approach for test-time compute scaling is search against a process reward model, where a model generates multiple potential candidates at each step of the search, and these partial trajectories are then scored by a separate reward model in order to guide the search process. The diversity of trajectories in the tree search process affects the accuracy of the search, since increasing diversity promotes more exploration. However, this diversity comes at a cost, as divergent trajectories have less KV sharing, which means they consume more memory and slow down the search process. Previous search methods either do not perform sufficient exploration, or else explore diverse trajectories but have high latency. We address this challenge by proposing Efficient Tree Search (ETS), which promotes KV sharing by pruning redundant trajectories while maintaining necessary diverse trajectories. ETS incorporates a linear programming cost model to promote KV cache sharing by penalizing the number of nodes retained, while incorporating a semantic coverage term into the cost model to ensure that we retain trajectories which are semantically different. We demonstrate how ETS can achieve 1.8times reduction in average KV cache size during the search process, leading to 1.4times increased throughput relative to prior state-of-the-art methods, with minimal accuracy degradation and without requiring any custom kernel implementation. Code is available at: https://github.com/SqueezeAILab/ETS.
GNNPipe: Scaling Deep GNN Training with Pipelined Model Parallelism
Communication is a key bottleneck for distributed graph neural network (GNN) training. This paper proposes GNNPipe, a new approach that scales the distributed full-graph deep GNN training. Being the first to use layer-level model parallelism for GNN training, GNNPipe partitions GNN layers among GPUs, each device performs the computation for a disjoint subset of consecutive GNN layers on the whole graph. Compared to graph parallelism with each GPU handling a graph partition, GNNPipe reduces the communication volume by a factor of the number of GNN layers. GNNPipe overcomes the unique challenges for pipelined layer-level model parallelism on the whole graph by partitioning it into dependent chunks, allowing the use of historical vertex embeddings, and applying specific training techniques to ensure convergence. We also propose a hybrid approach by combining GNNPipe with graph parallelism to handle large graphs, achieve better computer resource utilization and ensure model convergence. We build a general GNN training system supporting all three parallelism setting. Extensive experiments show that our method reduces the per-epoch training time by up to 2.45x (on average 1.58x) and reduces the communication volume and overhead by up to 22.89x and 27.21x (on average 8.69x and 11.60x), respectively, while achieving a comparable level of model accuracy and convergence speed compared to graph parallelism.
Autoregressive Image Generation with Randomized Parallel Decoding
We introduce ARPG, a novel visual autoregressive model that enables randomized parallel generation, addressing the inherent limitations of conventional raster-order approaches, which hinder inference efficiency and zero-shot generalization due to their sequential, predefined token generation order. Our key insight is that effective random-order modeling necessitates explicit guidance for determining the position of the next predicted token. To this end, we propose a novel guided decoding framework that decouples positional guidance from content representation, encoding them separately as queries and key-value pairs. By directly incorporating this guidance into the causal attention mechanism, our approach enables fully random-order training and generation, eliminating the need for bidirectional attention. Consequently, ARPG readily generalizes to zero-shot tasks such as image inpainting, outpainting, and resolution expansion. Furthermore, it supports parallel inference by concurrently processing multiple queries using a shared KV cache. On the ImageNet-1K 256 benchmark, our approach attains an FID of 1.94 with only 64 sampling steps, achieving over a 20-fold increase in throughput while reducing memory consumption by over 75% compared to representative recent autoregressive models at a similar scale.
Scattered Mixture-of-Experts Implementation
We present ScatterMoE, an implementation of Sparse Mixture-of-Experts (SMoE) on GPUs. ScatterMoE builds upon existing implementations, and overcoming some of the limitations to improve inference and training speed, and memory footprint. This implementation achieves this by avoiding padding and making excessive copies of the input. We introduce ParallelLinear, the main component we use to build our implementation and the various kernels used to speed up the operation. We benchmark our implementation against Megablocks, and show that it enables a higher throughput and lower memory footprint. We also show how ParallelLinear enables extension of the Mixture-of-Experts concept by demonstrating with an implementation of Mixture of Attention.
Universal Checkpointing: Efficient and Flexible Checkpointing for Large Scale Distributed Training
Existing checkpointing approaches seem ill-suited for distributed training even though hardware limitations make model parallelism, i.e., sharding model state across multiple accelerators, a requirement for model scaling. Consolidating distributed model state into a single checkpoint unacceptably slows down training, and is impractical at extreme scales. Distributed checkpoints, in contrast, are tightly coupled to the model parallelism and hardware configurations of the training run, and thus unusable on different configurations. To address this problem, we propose Universal Checkpointing, a technique that enables efficient checkpoint creation while providing the flexibility of resuming on arbitrary parallelism strategy and hardware configurations. Universal Checkpointing unlocks unprecedented capabilities for large-scale training such as improved resilience to hardware failures through continued training on remaining healthy hardware, and reduced training time through opportunistic exploitation of elastic capacity. The key insight of Universal Checkpointing is the selection of the optimal representation in each phase of the checkpointing life cycle: distributed representation for saving, and consolidated representation for loading. This is achieved using two key mechanisms. First, the universal checkpoint format, which consists of a consolidated representation of each model parameter and metadata for mapping parameter fragments into training ranks of arbitrary model-parallelism configuration. Second, the universal checkpoint language, a simple but powerful specification language for converting distributed checkpoints into the universal checkpoint format. Our evaluation demonstrates the effectiveness and generality of Universal Checkpointing on state-of-the-art model architectures and a wide range of parallelism techniques.
Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms
Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not hold for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains such as biology that require the use of Jaccard, Gower, or more complex distances. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm to achieve an O(k)-fold speedup in the second SWAP phase of the algorithm, but will still find the same results as the original PAM algorithm. If we slightly relax the choice of swaps performed (at comparable quality), we can further accelerate the algorithm by performing up to k swaps in each iteration. With the substantially faster SWAP, we can now also explore alternative strategies for choosing the initial medoids. We also show how the CLARA and CLARANS algorithms benefit from these modifications. It can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100, we observed a 200-fold speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets as long as we can afford to compute a distance matrix, and in particular to higher k (at k=2, the new SWAP was only 1.5 times faster, as the speedup is expected to increase with k).
Streaming DiLoCo with overlapping communication: Towards a Distributed Free Lunch
Training of large language models (LLMs) is typically distributed across a large number of accelerators to reduce training time. Since internal states and parameter gradients need to be exchanged at each and every single gradient step, all devices need to be co-located using low-latency high-bandwidth communication links to support the required high volume of exchanged bits. Recently, distributed algorithms like DiLoCo have relaxed such co-location constraint: accelerators can be grouped into ``workers'', where synchronizations between workers only occur infrequently. This in turn means that workers can afford being connected by lower bandwidth communication links without affecting learning quality. However, in these methods, communication across workers still requires the same peak bandwidth as before, as the synchronizations require all parameters to be exchanged across all workers. In this paper, we improve DiLoCo in three ways. First, we synchronize only subsets of parameters in sequence, rather than all at once, which greatly reduces peak bandwidth. Second, we allow workers to continue training while synchronizing, which decreases wall clock time. Third, we quantize the data exchanged by workers, which further reduces bandwidth across workers. By properly combining these modifications, we show experimentally that we can distribute training of billion-scale parameters and reach similar quality as before, but reducing required bandwidth by two orders of magnitude.
Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models
The dominant paradigm for RLHF is online and on-policy RL: synchronously generating from the large language model (LLM) policy, labelling with a reward model, and learning using feedback on the LLM's own outputs. While performant, this paradigm is computationally inefficient. Inspired by classical deep RL literature, we propose separating generation and learning in RLHF. This enables asynchronous generation of new samples while simultaneously training on old samples, leading to faster training and more compute-optimal scaling. However, asynchronous training relies on an underexplored regime, online but off-policy RLHF: learning on samples from previous iterations of our model. To understand the challenges in this regime, we investigate a fundamental question: how much off-policyness can we tolerate for asynchronous training to speed up learning but maintain performance? Among several RLHF algorithms we tested, we find that online DPO is most robust to off-policy data, and robustness increases with the scale of the policy model. We study further compute optimizations for asynchronous RLHF but find that they come at a performance cost, giving rise to a trade-off. Finally, we verify the scalability of asynchronous RLHF by training LLaMA 3.1 8B on an instruction-following task 40% faster than a synchronous run while matching final performance.
NanoFlow: Towards Optimal Large Language Model Serving Throughput
The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.
APB: Accelerating Distributed Long-Context Inference by Passing Compressed Context Blocks across GPUs
While long-context inference is crucial for advancing large language model (LLM) applications, its prefill speed remains a significant bottleneck. Current approaches, including sequence parallelism strategies and compute reduction through approximate attention mechanisms, still fall short of delivering optimal inference efficiency. This hinders scaling the inputs to longer sequences and processing long-context queries in a timely manner. To address this, we introduce APB, an efficient long-context inference framework that leverages multi-host approximate attention to enhance prefill speed by reducing compute and enhancing parallelism simultaneously. APB introduces a communication mechanism for essential key-value pairs within a sequence parallelism framework, enabling a faster inference speed while maintaining task performance. We implement APB by incorporating a tailored FlashAttn kernel alongside optimized distribution strategies, supporting diverse models and parallelism configurations. APB achieves speedups of up to 9.2x, 4.2x, and 1.6x compared with FlashAttn, RingAttn, and StarAttn, respectively, without any observable task performance degradation. We provide the implementation and experiment code of APB in https://github.com/thunlp/APB.
Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment
Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks. However, training these models can incur significant expenses, often requiring tens of thousands of GPUs for months of continuous operation. Typically, this training is carried out in specialized GPU clusters equipped with homogeneous high-speed Remote Direct Memory Access (RDMA) network interface cards (NICs). The acquisition and maintenance of such dedicated clusters is challenging. Current LLM training frameworks, like Megatron-LM and Megatron-DeepSpeed, focus primarily on optimizing training within homogeneous cluster settings. In this paper, we introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment. Our primary technical contribution lies in a novel scheduling method that intelligently allocates distinct computational tasklets in LLM training to specific groups of GPU devices based on the characteristics of their connected NICs. Furthermore, our proposed framework, utilizing pipeline parallel techniques, demonstrates scalability to multiple GPU clusters, even in scenarios without high-speed interconnects between nodes in distinct clusters. We conducted comprehensive experiments that involved various scenarios in the heterogeneous NIC environment. In most cases, our framework achieves performance levels close to those achievable with homogeneous RDMA-capable networks (InfiniBand or RoCE), significantly exceeding training efficiency within the pure Ethernet environment. Additionally, we verified that our framework outperforms other mainstream LLM frameworks under heterogeneous NIC environment in terms of training efficiency and can be seamlessly integrated with them.
Pipette: Automatic Fine-grained Large Language Model Training Configurator for Real-World Clusters
Training large language models (LLMs) is known to be challenging because of the huge computational and memory capacity requirements. To address these issues, it is common to use a cluster of GPUs with 3D parallelism, which splits a model along the data batch, pipeline stage, and intra-layer tensor dimensions. However, the use of 3D parallelism produces the additional challenge of finding the optimal number of ways on each dimension and mapping the split models onto the GPUs. Several previous studies have attempted to automatically find the optimal configuration, but many of these lacked several important aspects. For instance, the heterogeneous nature of the interconnect speeds is often ignored. While the peak bandwidths for the interconnects are usually made equal, the actual attained bandwidth varies per link in real-world clusters. Combined with the critical path modeling that does not properly consider the communication, they easily fall into sub-optimal configurations. In addition, they often fail to consider the memory requirement per GPU, often recommending solutions that could not be executed. To address these challenges, we propose Pipette, which is an automatic fine-grained LLM training configurator for real-world clusters. By devising better performance models along with the memory estimator and fine-grained individual GPU assignment, Pipette achieves faster configurations that satisfy the memory constraints. We evaluated Pipette on large clusters to show that it provides a significant speedup over the prior art. The implementation of Pipette is available at https://github.com/yimjinkyu1/date2024_pipette.
Context Perception Parallel Decoder for Scene Text Recognition
Scene text recognition (STR) methods have struggled to attain high accuracy and fast inference speed. Autoregressive (AR)-based models implement the recognition in a character-by-character manner, showing superiority in accuracy but with slow inference speed. Alternatively, parallel decoding (PD)-based models infer all characters in a single decoding pass, offering faster inference speed but generally worse accuracy. We first present an empirical study of AR decoding in STR, and discover that the AR decoder not only models linguistic context, but also provides guidance on visual context perception. Consequently, we propose Context Perception Parallel Decoder (CPPD) to predict the character sequence in a PD pass. CPPD devises a character counting module to infer the occurrence count of each character, and a character ordering module to deduce the content-free reading order and placeholders. Meanwhile, the character prediction task associates the placeholders with characters. They together build a comprehensive recognition context. We construct a series of CPPD models and also plug the proposed modules into existing STR decoders. Experiments on both English and Chinese benchmarks demonstrate that the CPPD models achieve highly competitive accuracy while running approximately 8x faster than their AR-based counterparts. Moreover, the plugged models achieve significant accuracy improvements. Code is at https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/algorithm_rec_cppd_en.md{this https URL}.
HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices
In recent times, the emergence of Large Language Models (LLMs) has resulted in increasingly larger model size, posing challenges for inference on low-resource devices. Prior approaches have explored offloading to facilitate low-memory inference but often suffer from efficiency due to I/O bottlenecks. To achieve low-latency LLMs inference on resource-constrained devices, we introduce HeteGen, a novel approach that presents a principled framework for heterogeneous parallel computing using CPUs and GPUs. Based on this framework, HeteGen further employs heterogeneous parallel computing and asynchronous overlap for LLMs to mitigate I/O bottlenecks. Our experiments demonstrate a substantial improvement in inference speed, surpassing state-of-the-art methods by over 317% at most.
Creating a Dataset for High-Performance Computing Code Translation using LLMs: A Bridge Between OpenMP Fortran and C++
In this study, we present a novel dataset for training machine learning models translating between OpenMP Fortran and C++ code. To ensure reliability and applicability, the dataset is created from a range of representative open-source OpenMP benchmarks. It is also refined using a meticulous code similarity test. The effectiveness of our dataset is assessed using both quantitative (CodeBLEU) and qualitative (human evaluation) methods. We showcase how this dataset significantly elevates the translation competencies of large language models (LLMs). Specifically, models without prior coding knowledge experienced a boost of times~5.1 in their CodeBLEU scores, while models with some coding familiarity saw an impressive times~9.9-fold increase. The best fine-tuned model using our dataset outperforms GPT-4. It is also reaching human-level accuracy. This work underscores the immense potential of our dataset in propelling advancements in the domain of code translation for high-performance computing. The dataset is accessible at https://github.com/bin123apple/Fortran-CPP-HPC-code-translation-dataset{OpenMP-Fortran-CPP-Translation}.
CLLMs: Consistency Large Language Models
Parallel decoding methods such as Jacobi decoding show promise for more efficient LLM inference as it breaks the sequential nature of the LLM decoding process and transforms it into parallelizable computation. However, in practice, it achieves little speedup compared to traditional autoregressive (AR) decoding, primarily because Jacobi decoding seldom accurately predicts more than one token in a single fixed-point iteration step. To address this, we develop a new approach aimed at realizing fast convergence from any state to the fixed point on a Jacobi trajectory. This is accomplished by refining the target LLM to consistently predict the fixed point given any state as input. Extensive experiments demonstrate the effectiveness of our method, showing 2.4times to 3.4times improvements in generation speed while preserving generation quality across both domain-specific and open-domain benchmarks.
Token-wise Influential Training Data Retrieval for Large Language Models
Given a Large Language Model (LLM) generation, how can we identify which training data led to this generation? In this paper, we proposed RapidIn, a scalable framework adapting to LLMs for estimating the influence of each training data. The proposed framework consists of two stages: caching and retrieval. First, we compress the gradient vectors by over 200,000x, allowing them to be cached on disk or in GPU/CPU memory. Then, given a generation, RapidIn efficiently traverses the cached gradients to estimate the influence within minutes, achieving over a 6,326x speedup. Moreover, RapidIn supports multi-GPU parallelization to substantially accelerate caching and retrieval. Our empirical result confirms the efficiency and effectiveness of RapidIn.
94% on CIFAR-10 in 3.29 Seconds on a Single GPU
CIFAR-10 is among the most widely used datasets in machine learning, facilitating thousands of research projects per year. To accelerate research and reduce the cost of experiments, we introduce training methods for CIFAR-10 which reach 94% accuracy in 3.29 seconds, 95% in 10.4 seconds, and 96% in 46.3 seconds, when run on a single NVIDIA A100 GPU. As one factor contributing to these training speeds, we propose a derandomized variant of horizontal flipping augmentation, which we show improves over the standard method in every case where flipping is beneficial over no flipping at all. Our code is released at https://github.com/KellerJordan/cifar10-airbench.
Hanayo: Harnessing Wave-like Pipeline Parallelism for Enhanced Large Model Training Efficiency
Large-scale language models have become increasingly challenging and expensive to train. Among various methods addressing this issue, Pipeline Parallelism has been widely employed to accommodate massive model weights within limited GPU memory. This paper introduces Hanayo, a wave-like pipeline parallelism strategy that boasts a concise structure and practical applicability, alongside a high-performance pipeline execution runtime to tackle the challenges of pipeline strategy implementation. Hanayo mitigates the issues of pipeline bubbles and excessive memory consumption prevalent in existing schemes, without resorting to model duplicates as in Chimera. Our evaluation, conducted on four distinct computing clusters and involving both GPT-like and BERT-like architectures with up to 32 GPUs, demonstrates up to a 30.4 \% increase in throughput compared to the state-of-the-art approach.
A Distributed Data-Parallel PyTorch Implementation of the Distributed Shampoo Optimizer for Training Neural Networks At-Scale
Shampoo is an online and stochastic optimization algorithm belonging to the AdaGrad family of methods for training neural networks. It constructs a block-diagonal preconditioner where each block consists of a coarse Kronecker product approximation to full-matrix AdaGrad for each parameter of the neural network. In this work, we provide a complete description of the algorithm as well as the performance optimizations that our implementation leverages to train deep networks at-scale in PyTorch. Our implementation enables fast multi-GPU distributed data-parallel training by distributing the memory and computation associated with blocks of each parameter via PyTorch's DTensor data structure and performing an AllGather primitive on the computed search directions at each iteration. This major performance enhancement enables us to achieve at most a 10% performance reduction in per-step wall-clock time compared against standard diagonal-scaling-based adaptive gradient methods. We validate our implementation by performing an ablation study on training ImageNet ResNet50, demonstrating Shampoo's superiority over standard training recipes with minimal hyperparameter tuning.
MatrixKAN: Parallelized Kolmogorov-Arnold Network
Kolmogorov-Arnold Networks (KAN) are a new class of neural network architecture representing a promising alternative to the Multilayer Perceptron (MLP), demonstrating improved expressiveness and interpretability. However, KANs suffer from slow training and inference speeds relative to MLPs due in part to the recursive nature of the underlying B-spline calculations. This issue is particularly apparent with respect to KANs utilizing high-degree B-splines, as the number of required non-parallelizable recursions is proportional to B-spline degree. We solve this issue by proposing MatrixKAN, a novel optimization that parallelizes B-spline calculations with matrix representation and operations, thus significantly improving effective computation time for models utilizing high-degree B-splines. In this paper, we demonstrate the superior scaling of MatrixKAN's computation time relative to B-spline degree. Further, our experiments demonstrate speedups of approximately 40x relative to KAN, with significant additional speedup potential for larger datasets or higher spline degrees.
FInC Flow: Fast and Invertible k times k Convolutions for Normalizing Flows
Invertible convolutions have been an essential element for building expressive normalizing flow-based generative models since their introduction in Glow. Several attempts have been made to design invertible k times k convolutions that are efficient in training and sampling passes. Though these attempts have improved the expressivity and sampling efficiency, they severely lagged behind Glow which used only 1 times 1 convolutions in terms of sampling time. Also, many of the approaches mask a large number of parameters of the underlying convolution, resulting in lower expressivity on a fixed run-time budget. We propose a k times k convolutional layer and Deep Normalizing Flow architecture which i.) has a fast parallel inversion algorithm with running time O(n k^2) (n is height and width of the input image and k is kernel size), ii.) masks the minimal amount of learnable parameters in a layer. iii.) gives better forward pass and sampling times comparable to other k times k convolution-based models on real-world benchmarks. We provide an implementation of the proposed parallel algorithm for sampling using our invertible convolutions on GPUs. Benchmarks on CIFAR-10, ImageNet, and CelebA datasets show comparable performance to previous works regarding bits per dimension while significantly improving the sampling time.
SambaNova SN40L: Scaling the AI Memory Wall with Dataflow and Composition of Experts
Monolithic large language models (LLMs) like GPT-4 have paved the way for modern generative AI applications. Training, serving, and maintaining monolithic LLMs at scale, however, remains prohibitively expensive and challenging. The disproportionate increase in compute-to-memory ratio of modern AI accelerators have created a memory wall, necessitating new methods to deploy AI. Composition of Experts (CoE) is an alternative modular approach that lowers the cost and complexity of training and serving. However, this approach presents two key challenges when using conventional hardware: (1) without fused operations, smaller models have lower operational intensity, which makes high utilization more challenging to achieve; and (2) hosting a large number of models can be either prohibitively expensive or slow when dynamically switching between them. In this paper, we describe how combining CoE, streaming dataflow, and a three-tier memory system scales the AI memory wall. We describe Samba-CoE, a CoE system with 150 experts and a trillion total parameters. We deploy Samba-CoE on the SambaNova SN40L Reconfigurable Dataflow Unit (RDU) - a commercial dataflow accelerator architecture that has been co-designed for enterprise inference and training applications. The chip introduces a new three-tier memory system with on-chip distributed SRAM, on-package HBM, and off-package DDR DRAM. A dedicated inter-RDU network enables scaling up and out over multiple sockets. We demonstrate speedups ranging from 2x to 13x on various benchmarks running on eight RDU sockets compared with an unfused baseline. We show that for CoE inference deployments, the 8-socket RDU Node reduces machine footprint by up to 19x, speeds up model switching time by 15x to 31x, and achieves an overall speedup of 3.7x over a DGX H100 and 6.6x over a DGX A100.
AReaL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning
Reinforcement learning (RL) has become a trending paradigm for training large language models (LLMs), particularly for reasoning tasks. Effective RL for LLMs requires massive parallelization and poses an urgent need for efficient training systems. Most existing large-scale RL systems for LLMs are synchronous by alternating generation and training in a batch setting, where the rollouts in each training batch are generated by the same (or latest) model. This stabilizes RL training but suffers from severe system-level inefficiency. Generation must wait until the longest output in the batch is completed before model update, resulting in GPU underutilization. We present AReaL, a fully asynchronous RL system that completely decouples generation from training. Rollout workers in AReaL continuously generate new outputs without waiting, while training workers update the model whenever a batch of data is collected. AReaL also incorporates a collection of system-level optimizations, leading to substantially higher GPU utilization. To stabilize RL training, AReaL balances the workload of rollout and training workers to control data staleness, and adopts a staleness-enhanced PPO variant to better handle outdated training samples. Extensive experiments on math and code reasoning benchmarks show that AReaL achieves up to 2.57times training speedup compared to the best synchronous systems with the same number of GPUs and matched or even improved final performance. The code of AReaL is available at https://github.com/inclusionAI/AReaL/.