Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLLM-based User Profile Management for Recommender System
The rapid advancement of Large Language Models (LLMs) has opened new opportunities in recommender systems by enabling zero-shot recommendation without conventional training. Despite their potential, most existing works rely solely on users' purchase histories, leaving significant room for improvement by incorporating user-generated textual data, such as reviews and product descriptions. Addressing this gap, we propose PURE, a novel LLM-based recommendation framework that builds and maintains evolving user profiles by systematically extracting and summarizing key information from user reviews. PURE consists of three core components: a Review Extractor for identifying user preferences and key product features, a Profile Updater for refining and updating user profiles, and a Recommender for generating personalized recommendations using the most current profile. To evaluate PURE, we introduce a continuous sequential recommendation task that reflects real-world scenarios by adding reviews over time and updating predictions incrementally. Our experimental results on Amazon datasets demonstrate that PURE outperforms existing LLM-based methods, effectively leveraging long-term user information while managing token limitations.
Guided Profile Generation Improves Personalization with LLMs
In modern commercial systems, including Recommendation, Ranking, and E-Commerce platforms, there is a trend towards improving customer experiences by incorporating Personalization context as input into Large Language Models (LLMs). However, LLMs often struggle to effectively parse and utilize sparse and complex personal context without additional processing or contextual enrichment, underscoring the need for more sophisticated context understanding mechanisms. In this work, we propose Guided Profile Generation (GPG), a general method designed to generate personal profiles in natural language. As is observed, intermediate guided profile generation enables LLMs to summarize, and extract the important, distinctive features from the personal context into concise, descriptive sentences, precisely tailoring their generation more closely to an individual's unique habits and preferences. Our experimental results show that GPG improves LLM's personalization ability across different tasks, for example, it increases 37% accuracy in predicting personal preference compared to directly feeding the LLMs with raw personal context.
Know Me, Respond to Me: Benchmarking LLMs for Dynamic User Profiling and Personalized Responses at Scale
Large Language Models (LLMs) have emerged as personalized assistants for users across a wide range of tasks -- from offering writing support to delivering tailored recommendations or consultations. Over time, the interaction history between a user and an LLM can provide extensive information about an individual's traits and preferences. However, open questions remain on how well LLMs today can effectively leverage such history to (1) internalize the user's inherent traits and preferences, (2) track how the user profiling and preferences evolve over time, and (3) generate personalized responses accordingly in new scenarios. In this work, we introduce the PERSONAMEM benchmark. PERSONAMEM features curated user profiles with over 180 simulated user-LLM interaction histories, each containing up to 60 sessions of multi-turn conversations across 15 real-world tasks that require personalization. Given an in-situ user query, i.e. query issued by the user from the first-person perspective, we evaluate LLM chatbots' ability to identify the most suitable response according to the current state of the user's profile. We observe that current LLMs still struggle to recognize the dynamic evolution in users' profiles over time through direct prompting approaches. As a consequence, LLMs often fail to deliver responses that align with users' current situations and preferences, with frontier models such as GPT-4.1, o4-mini, GPT-4.5, o1, or Gemini-2.0 achieving only around 50% overall accuracy, suggesting room for improvement. We hope that PERSONAMEM, along with the user profile and conversation simulation pipeline, can facilitate future research in the development of truly user-aware chatbots. Code and data are available at github.com/bowen-upenn/PersonaMem.
PRODIGy: a PROfile-based DIalogue Generation dataset
Providing dialogue agents with a profile representation can improve their consistency and coherence, leading to better conversations. However, current profile-based dialogue datasets for training such agents contain either explicit profile representations that are simple and dialogue-specific, or implicit representations that are difficult to collect. In this work, we propose a unified framework in which we bring together both standard and more sophisticated profile representations by creating a new resource where each dialogue is aligned with all possible speaker representations such as communication style, biographies, and personality. This framework allows to test several baselines built using generative language models with several profile configurations. The automatic evaluation shows that profile-based models have better generalisation capabilities than models trained on dialogues only, both in-domain and cross-domain settings. These results are consistent for fine-tuned models and instruction-based LLMs. Additionally, human evaluation demonstrates a clear preference for generations consistent with both profile and context. Finally, to account for possible privacy concerns, all experiments are done under two configurations: inter-character and intra-character. In the former, the LM stores the information about the character in its internal representation, while in the latter, the LM does not retain any personal information but uses it only at inference time.
LettinGo: Explore User Profile Generation for Recommendation System
User profiling is pivotal for recommendation systems, as it transforms raw user interaction data into concise and structured representations that drive personalized recommendations. While traditional embedding-based profiles lack interpretability and adaptability, recent advances with large language models (LLMs) enable text-based profiles that are semantically richer and more transparent. However, existing methods often adhere to fixed formats that limit their ability to capture the full diversity of user behaviors. In this paper, we introduce LettinGo, a novel framework for generating diverse and adaptive user profiles. By leveraging the expressive power of LLMs and incorporating direct feedback from downstream recommendation tasks, our approach avoids the rigid constraints imposed by supervised fine-tuning (SFT). Instead, we employ Direct Preference Optimization (DPO) to align the profile generator with task-specific performance, ensuring that the profiles remain adaptive and effective. LettinGo operates in three stages: (1) exploring diverse user profiles via multiple LLMs, (2) evaluating profile quality based on their impact in recommendation systems, and (3) aligning the profile generation through pairwise preference data derived from task performance. Experimental results demonstrate that our framework significantly enhances recommendation accuracy, flexibility, and contextual awareness. This work enhances profile generation as a key innovation for next-generation recommendation systems.
Personalizing Dialogue Agents: I have a dog, do you have pets too?
Chit-chat models are known to have several problems: they lack specificity, do not display a consistent personality and are often not very captivating. In this work we present the task of making chit-chat more engaging by conditioning on profile information. We collect data and train models to (i) condition on their given profile information; and (ii) information about the person they are talking to, resulting in improved dialogues, as measured by next utterance prediction. Since (ii) is initially unknown our model is trained to engage its partner with personal topics, and we show the resulting dialogue can be used to predict profile information about the interlocutors.
GenUP: Generative User Profilers as In-Context Learners for Next POI Recommender Systems
Traditional POI recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world scenarios and on-device POI recommendations. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: https://github.com/w11wo/GenUP.
CharacterGPT: A Persona Reconstruction Framework for Role-Playing Agents
The recent introduction of the Assistants API highlights its potential for large language models (LLMs) in role-playing agents (RPA). However, maintaining consistent character personas remains a significant challenge due to variability in information extraction, which frequently omits critical elements such as backstory or interpersonal relationships. To address this limitation, we introduce CharacterGPT, a framework designed to dynamically reconstruct character personas through Character Persona Training (CPT). This approach incrementally updates personas by extracting traits from chapter-wise novel summaries, reflecting the progression of the narrative. Our framework is evaluated through Big Five personality evaluations and creative tasks, in which characters generate original narratives, demonstrating the efficacy of CharacterGPT in preserving persona consistency. The code and results are available at https://github.com/Jeiyoon/charactergpt
End-to-end Training for Recommendation with Language-based User Profiles
Many online platforms maintain user profiles for personalization. Unfortunately, these profiles are typically not interpretable or easily modifiable by the user. To remedy this shortcoming, we explore natural language-based user profiles, as they promise enhanced transparency and scrutability of recommender systems. While existing work has shown that language-based profiles from standard LLMs can be effective, such generalist LLMs are unlikely to be optimal for this task. In this paper, we introduce LangPTune, the first end-to-end learning method for training LLMs to produce language-based user profiles that optimize recommendation effectiveness. Through comprehensive evaluations of LangPTune across various training configurations and benchmarks, we demonstrate that our approach significantly outperforms existing profile-based methods. In addition, it approaches performance levels comparable to state-of-the-art, less transparent recommender systems, providing a robust and interpretable alternative to conventional systems. Finally, we validate the relative interpretability of these language-based user profiles through user studies involving crowdworkers and GPT-4-based evaluations. Implementation of LangPTune can be found at https://github.com/ZhaolinGao/LangPTune.
WikiPersonas: What Can We Learn From Personalized Alignment to Famous People?
Preference alignment has become a standard pipeline in finetuning models to follow generic human preferences. Majority of work seeks to optimize model to produce responses that would be preferable on average, simplifying the diverse and often contradicting space of human preferences. While research has increasingly focused on personalized alignment: adapting models to individual user preferences, there is a lack of personalized preference dataset which focus on nuanced individual-level preferences. To address this, we introduce WikiPersona: the first fine-grained personalization using well-documented, famous individuals. Our dataset challenges models to align with these personas through an interpretable process: generating verifiable textual descriptions of a persona's background and preferences in addition to alignment. We systematically evaluate different personalization approaches and find that as few-shot prompting with preferences and fine-tuning fail to simultaneously ensure effectiveness and efficiency, using inferred personal preferences as prefixes enables effective personalization, especially in topics where preferences clash while leading to more equitable generalization across unseen personas.
An AI-driven Malfunction Detection Concept for NFV Instances in 5G
Efficient network management is one of the key challenges of the constantly growing and increasingly complex wide area networks (WAN). The paradigm shift towards virtualized (NFV) and software defined networks (SDN) in the next generation of mobile networks (5G), as well as the latest scientific insights in the field of Artificial Intelligence (AI) enable the transition from manually managed networks nowadays to fully autonomic and dynamic self-organized networks (SON). This helps to meet the KPIs and reduce at the same time operational costs (OPEX). In this paper, an AI driven concept is presented for the malfunction detection in NFV applications with the help of semi-supervised learning. For this purpose, a profile of the application under test is created. This profile then is used as a reference to detect abnormal behaviour. For example, if there is a bug in the updated version of the app, it is now possible to react autonomously and roll-back the NFV app to a previous version in order to avoid network outages.
Persona Vectors: Monitoring and Controlling Character Traits in Language Models
Large language models interact with users through a simulated 'Assistant' persona. While the Assistant is typically trained to be helpful, harmless, and honest, it sometimes deviates from these ideals. In this paper, we identify directions in the model's activation space-persona vectors-underlying several traits, such as evil, sycophancy, and propensity to hallucinate. We confirm that these vectors can be used to monitor fluctuations in the Assistant's personality at deployment time. We then apply persona vectors to predict and control personality shifts that occur during training. We find that both intended and unintended personality changes after finetuning are strongly correlated with shifts along the relevant persona vectors. These shifts can be mitigated through post-hoc intervention, or avoided in the first place with a new preventative steering method. Moreover, persona vectors can be used to flag training data that will produce undesirable personality changes, both at the dataset level and the individual sample level. Our method for extracting persona vectors is automated and can be applied to any personality trait of interest, given only a natural-language description.
PersonaFeedback: A Large-scale Human-annotated Benchmark For Personalization
With the rapid improvement in the general capabilities of LLMs, LLM personalization, i.e., how to build LLM systems that can generate personalized responses or services that are tailored to distinct user personas, has become an increasingly important research and engineering problem. However, unlike many new challenging benchmarks being released for evaluating the general/reasoning capabilities, the lack of high-quality benchmarks for evaluating LLM personalization greatly hinders progress in this field. To address this, we introduce PersonaFeedback, a new benchmark that directly evaluates LLMs' ability to provide personalized responses given pre-defined user personas and queries. Unlike existing benchmarks that require models to infer implicit user personas from historical interactions, PersonaFeedback decouples persona inference from personalization, focusing on evaluating the model's ability to generate responses tailored to explicit personas. PersonaFeedback consists of 8298 human-annotated test cases, which are categorized into easy, medium, and hard tiers based on the contextual complexity of the user personas and the difficulty in distinguishing subtle differences between two personalized responses. We conduct comprehensive evaluations across a wide range of models. The empirical results reveal that even state-of-the-art LLMs that can solve complex real-world reasoning tasks could fall short on the hard tier of PersonaFeedback where even human evaluators may find the distinctions challenging. Furthermore, we conduct an in-depth analysis of failure modes across various types of systems, demonstrating that the current retrieval-augmented framework should not be seen as a de facto solution for personalization tasks. All benchmark data, annotation protocols, and the evaluation pipeline will be publicly available to facilitate future research on LLM personalization.
Federated Learning with Partial Model Personalization
We consider two federated learning algorithms for training partially personalized models, where the shared and personal parameters are updated either simultaneously or alternately on the devices. Both algorithms have been proposed in the literature, but their convergence properties are not fully understood, especially for the alternating variant. We provide convergence analyses of both algorithms in the general nonconvex setting with partial participation and delineate the regime where one dominates the other. Our experiments on real-world image, text, and speech datasets demonstrate that (a) partial personalization can obtain most of the benefits of full model personalization with a small fraction of personal parameters, and, (b) the alternating update algorithm often outperforms the simultaneous update algorithm by a small but consistent margin.
All You Need Is Logs: Improving Code Completion by Learning from Anonymous IDE Usage Logs
In this work, we propose an approach for collecting completion usage logs from the users in an IDE and using them to train a machine learning based model for ranking completion candidates. We developed a set of features that describe completion candidates and their context, and deployed their anonymized collection in the Early Access Program of IntelliJ-based IDEs. We used the logs to collect a dataset of code completions from users, and employed it to train a ranking CatBoost model. Then, we evaluated it in two settings: on a held-out set of the collected completions and in a separate A/B test on two different groups of users in the IDE. Our evaluation shows that using a simple ranking model trained on the past user behavior logs significantly improved code completion experience. Compared to the default heuristics-based ranking, our model demonstrated a decrease in the number of typing actions necessary to perform the completion in the IDE from 2.073 to 1.832. The approach adheres to privacy requirements and legal constraints, since it does not require collecting personal information, performing all the necessary anonymization on the client's side. Importantly, it can be improved continuously: implementing new features, collecting new data, and evaluating new models - this way, we have been using it in production since the end of 2020.
Enhancing Personalized Multi-Turn Dialogue with Curiosity Reward
Effective conversational agents must be able to personalize their behavior to suit a user's preferences, personality, and attributes, whether they are assisting with writing tasks or operating in domains like education or healthcare. Current training methods like Reinforcement Learning from Human Feedback (RLHF) prioritize helpfulness and safety but fall short in fostering truly empathetic, adaptive, and personalized interactions. Traditional approaches to personalization often rely on extensive user history, limiting their effectiveness for new or context-limited users. To overcome these limitations, we propose to incorporate an intrinsic motivation to improve the conversational agents's model of the user as an additional reward alongside multi-turn RLHF. This reward mechanism encourages the agent to actively elicit user traits by optimizing conversations to increase the accuracy of its user model. Consequently, the policy agent can deliver more personalized interactions through obtaining more information about the user. We applied our method both education and fitness settings, where LLMs teach concepts or recommend personalized strategies based on users' hidden learning style or lifestyle attributes. Using LLM-simulated users, our approach outperformed a multi-turn RLHF baseline in revealing information about the users' preferences, and adapting to them.