Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAutomatic Pronunciation Assessment -- A Review
Pronunciation assessment and its application in computer-aided pronunciation training (CAPT) have seen impressive progress in recent years. With the rapid growth in language processing and deep learning over the past few years, there is a need for an updated review. In this paper, we review methods employed in pronunciation assessment for both phonemic and prosodic. We categorize the main challenges observed in prominent research trends, and highlight existing limitations, and available resources. This is followed by a discussion of the remaining challenges and possible directions for future work.
Acoustic Feature Mixup for Balanced Multi-aspect Pronunciation Assessment
In automated pronunciation assessment, recent emphasis progressively lies on evaluating multiple aspects to provide enriched feedback. However, acquiring multi-aspect-score labeled data for non-native language learners' speech poses challenges; moreover, it often leads to score-imbalanced distributions. In this paper, we propose two Acoustic Feature Mixup strategies, linearly and non-linearly interpolating with the in-batch averaged feature, to address data scarcity and score-label imbalances. Primarily using goodness-of-pronunciation as an acoustic feature, we tailor mixup designs to suit pronunciation assessment. Further, we integrate fine-grained error-rate features by comparing speech recognition results with the original answer phonemes, giving direct hints for mispronunciation. Effective mixing of the acoustic features notably enhances overall scoring performances on the speechocean762 dataset, and detailed analysis highlights our potential to predict unseen distortions.
The complementary roles of non-verbal cues for Robust Pronunciation Assessment
Research on pronunciation assessment systems focuses on utilizing phonetic and phonological aspects of non-native (L2) speech, often neglecting the rich layer of information hidden within the non-verbal cues. In this study, we proposed a novel pronunciation assessment framework, IntraVerbalPA. % The framework innovatively incorporates both fine-grained frame- and abstract utterance-level non-verbal cues, alongside the conventional speech and phoneme representations. Additionally, we introduce ''Goodness of phonemic-duration'' metric to effectively model duration distribution within the framework. Our results validate the effectiveness of the proposed IntraVerbalPA framework and its individual components, yielding performance that either matches or outperforms existing research works.
Towards a Unified Benchmark for Arabic Pronunciation Assessment: Quranic Recitation as Case Study
We present a unified benchmark for mispronunciation detection in Modern Standard Arabic (MSA) using Qur'anic recitation as a case study. Our approach lays the groundwork for advancing Arabic pronunciation assessment by providing a comprehensive pipeline that spans data processing, the development of a specialized phoneme set tailored to the nuances of MSA pronunciation, and the creation of the first publicly available test set for this task, which we term as the Qur'anic Mispronunciation Benchmark (QuranMB.v1). Furthermore, we evaluate several baseline models to provide initial performance insights, thereby highlighting both the promise and the challenges inherent in assessing MSA pronunciation. By establishing this standardized framework, we aim to foster further research and development in pronunciation assessment in Arabic language technology and related applications.
speechocean762: An Open-Source Non-native English Speech Corpus For Pronunciation Assessment
This paper introduces a new open-source speech corpus named "speechocean762" designed for pronunciation assessment use, consisting of 5000 English utterances from 250 non-native speakers, where half of the speakers are children. Five experts annotated each of the utterances at sentence-level, word-level and phoneme-level. A baseline system is released in open source to illustrate the phoneme-level pronunciation assessment workflow on this corpus. This corpus is allowed to be used freely for commercial and non-commercial purposes. It is available for free download from OpenSLR, and the corresponding baseline system is published in the Kaldi speech recognition toolkit.
Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning
Assessing spoken language is challenging, and quantifying pronunciation metrics for machine learning models is even harder. However, for the Holy Quran, this task is simplified by the rigorous recitation rules (tajweed) established by Muslim scholars, enabling highly effective assessment. Despite this advantage, the scarcity of high-quality annotated data remains a significant barrier. In this work, we bridge these gaps by introducing: (1) A 98% automated pipeline to produce high-quality Quranic datasets -- encompassing: Collection of recitations from expert reciters, Segmentation at pause points (waqf) using our fine-tuned wav2vec2-BERT model, Transcription of segments, Transcript verification via our novel Tasmeea algorithm; (2) 850+ hours of audio (~300K annotated utterances); (3) A novel ASR-based approach for pronunciation error detection, utilizing our custom Quran Phonetic Script (QPS) to encode Tajweed rules (unlike the IPA standard for Modern Standard Arabic). QPS uses a two-level script: (Phoneme level): Encodes Arabic letters with short/long vowels. (Sifa level): Encodes articulation characteristics of every phoneme. We further include comprehensive modeling with our novel multi-level CTC Model which achieved 0.16% average Phoneme Error Rate (PER) on the testset. We release all code, data, and models as open-source: https://obadx.github.io/prepare-quran-dataset/
QVoice: Arabic Speech Pronunciation Learning Application
This paper introduces a novel Arabic pronunciation learning application QVoice, powered with end-to-end mispronunciation detection and feedback generator module. The application is designed to support non-native Arabic speakers in enhancing their pronunciation skills, while also helping native speakers mitigate any potential influence from regional dialects on their Modern Standard Arabic (MSA) pronunciation. QVoice employs various learning cues to aid learners in comprehending meaning, drawing connections with their existing knowledge of English language, and offers detailed feedback for pronunciation correction, along with contextual examples showcasing word usage. The learning cues featured in QVoice encompass a wide range of meaningful information, such as visualizations of phrases/words and their translations, as well as phonetic transcriptions and transliterations. QVoice provides pronunciation feedback at the character level and assesses performance at the word level.
Just ASR + LLM? A Study on Speech Large Language Models' Ability to Identify and Understand Speaker in Spoken Dialogue
In recent years, we have observed a rapid advancement in speech language models (SpeechLLMs), catching up with humans' listening and reasoning abilities. SpeechLLMs have demonstrated impressive spoken dialog question-answering (SQA) performance in benchmarks like Gaokao, the English listening test of the college entrance exam in China, which seemingly requires understanding both the spoken content and voice characteristics of speakers in a conversation. However, after carefully examining Gaokao's questions, we find the correct answers to many questions can be inferred from the conversation transcript alone, i.e.\ without speaker segmentation and identification. Our evaluation of state-of-the-art models Qwen-Audio and WavLLM on both Gaokao and our proposed "What Do You Like?" dataset shows a significantly higher accuracy in these context-based questions than in identity-critical questions, which can only be answered reliably with correct speaker identification. The results and analysis suggest that when solving SQA, the current SpeechLLMs exhibit limited speaker awareness from the audio and behave similarly to an LLM reasoning from the conversation transcription without sound. We propose that tasks focused on identity-critical questions could offer a more accurate evaluation framework of SpeechLLMs in SQA.
Computer-assisted Pronunciation Training -- Speech synthesis is almost all you need
The research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high accuracy (only 60\% precision at 40\%-80\% recall). One of the key problems is the low availability of mispronounced speech that is needed for the reliable training of pronunciation error detection models. If we had a generative model that could mimic non-native speech and produce any amount of training data, then the task of detecting pronunciation errors would be much easier. We present three innovative techniques based on phoneme-to-phoneme (P2P), text-to-speech (T2S), and speech-to-speech (S2S) conversion to generate correctly pronounced and mispronounced synthetic speech. We show that these techniques not only improve the accuracy of three machine learning models for detecting pronunciation errors but also help establish a new state-of-the-art in the field. Earlier studies have used simple speech generation techniques such as P2P conversion, but only as an additional mechanism to improve the accuracy of pronunciation error detection. We, on the other hand, consider speech generation to be the first-class method of detecting pronunciation errors. The effectiveness of these techniques is assessed in the tasks of detecting pronunciation and lexical stress errors. Non-native English speech corpora of German, Italian, and Polish speakers are used in the evaluations. The best proposed S2S technique improves the accuracy of detecting pronunciation errors in AUC metric by 41\% from 0.528 to 0.749 compared to the state-of-the-art approach.
Phonological Level wav2vec2-based Mispronunciation Detection and Diagnosis Method
The automatic identification and analysis of pronunciation errors, known as Mispronunciation Detection and Diagnosis (MDD) plays a crucial role in Computer Aided Pronunciation Learning (CAPL) tools such as Second-Language (L2) learning or speech therapy applications. Existing MDD methods relying on analysing phonemes can only detect categorical errors of phonemes that have an adequate amount of training data to be modelled. With the unpredictable nature of the pronunciation errors of non-native or disordered speakers and the scarcity of training datasets, it is unfeasible to model all types of mispronunciations. Moreover, phoneme-level MDD approaches have a limited ability to provide detailed diagnostic information about the error made. In this paper, we propose a low-level MDD approach based on the detection of speech attribute features. Speech attribute features break down phoneme production into elementary components that are directly related to the articulatory system leading to more formative feedback to the learner. We further propose a multi-label variant of the Connectionist Temporal Classification (CTC) approach to jointly model the non-mutually exclusive speech attributes using a single model. The pre-trained wav2vec2 model was employed as a core model for the speech attribute detector. The proposed method was applied to L2 speech corpora collected from English learners from different native languages. The proposed speech attribute MDD method was further compared to the traditional phoneme-level MDD and achieved a significantly lower False Acceptance Rate (FAR), False Rejection Rate (FRR), and Diagnostic Error Rate (DER) over all speech attributes compared to the phoneme-level equivalent.
DTW-SiameseNet: Dynamic Time Warped Siamese Network for Mispronunciation Detection and Correction
Personal Digital Assistants (PDAs) - such as Siri, Alexa and Google Assistant, to name a few - play an increasingly important role to access information and complete tasks spanning multiple domains, and by diverse groups of users. A text-to-speech (TTS) module allows PDAs to interact in a natural, human-like manner, and play a vital role when the interaction involves people with visual impairments or other disabilities. To cater to the needs of a diverse set of users, inclusive TTS is important to recognize and pronounce correctly text in different languages and dialects. Despite great progress in speech synthesis, the pronunciation accuracy of named entities in a multi-lingual setting still has a large room for improvement. Existing approaches to correct named entity (NE) mispronunciations, like retraining Grapheme-to-Phoneme (G2P) models, or maintaining a TTS pronunciation dictionary, require expensive annotation of the ground truth pronunciation, which is also time consuming. In this work, we present a highly-precise, PDA-compatible pronunciation learning framework for the task of TTS mispronunciation detection and correction. In addition, we also propose a novel mispronunciation detection model called DTW-SiameseNet, which employs metric learning with a Siamese architecture for Dynamic Time Warping (DTW) with triplet loss. We demonstrate that a locale-agnostic, privacy-preserving solution to the problem of TTS mispronunciation detection is feasible. We evaluate our approach on a real-world dataset, and a corpus of NE pronunciations of an anonymized audio dataset of person names recorded by participants from 10 different locales. Human evaluation shows our proposed approach improves pronunciation accuracy on average by ~6% compared to strong phoneme-based and audio-based baselines.
CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice
Despite the recent advancements in Automatic Speech Recognition (ASR), the recognition of accented speech still remains a dominant problem. In order to create more inclusive ASR systems, research has shown that the integration of accent information, as part of a larger ASR framework, can lead to the mitigation of accented speech errors. We address multilingual accent classification through the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures which have been proven to perform well on a variety of speech-related downstream tasks. We introduce a simple-to-follow recipe aligned to the SpeechBrain toolkit for accent classification based on Common Voice 7.0 (English) and Common Voice 11.0 (Italian, German, and Spanish). Furthermore, we establish new state-of-the-art for English accent classification with as high as 95% accuracy. We also study the internal categorization of the Wav2Vev 2.0 embeddings through t-SNE, noting that there is a level of clustering based on phonological similarity. (Our recipe is open-source in the SpeechBrain toolkit, see: https://github.com/speechbrain/speechbrain/tree/develop/recipes)
The Development of a Comprehensive Spanish Dictionary for Phonetic and Lexical Tagging in Socio-phonetic Research (ESPADA)
Pronunciation dictionaries are an important component in the process of speech forced alignment. The accuracy of these dictionaries has a strong effect on the aligned speech data since they help the mapping between orthographic transcriptions and acoustic signals. In this paper, I present the creation of a comprehensive pronunciation dictionary in Spanish (ESPADA) that can be used in most of the dialect variants of Spanish data. Current dictionaries focus on specific regional variants, but with the flexible nature of our tool, it can be readily applied to capture the most common phonetic differences across major dialectal variants. We propose improvements to current pronunciation dictionaries as well as mapping other relevant annotations such as morphological and lexical information. In terms of size, it is currently the most complete dictionary with more than 628,000 entries, representing words from 16 countries. All entries come with their corresponding pronunciations, morphological and lexical tagging, and other relevant information for phonetic analysis: stress patterns, phonotactics, IPA transcriptions, and more. This aims to equip socio-phonetic researchers with a complete open-source tool that enhances dialectal research within socio-phonetic frameworks in the Spanish language.
Speaker-Conditioned Hierarchical Modeling for Automated Speech Scoring
Automatic Speech Scoring (ASS) is the computer-assisted evaluation of a candidate's speaking proficiency in a language. ASS systems face many challenges like open grammar, variable pronunciations, and unstructured or semi-structured content. Recent deep learning approaches have shown some promise in this domain. However, most of these approaches focus on extracting features from a single audio, making them suffer from the lack of speaker-specific context required to model such a complex task. We propose a novel deep learning technique for non-native ASS, called speaker-conditioned hierarchical modeling. In our technique, we take advantage of the fact that oral proficiency tests rate multiple responses for a candidate. We extract context vectors from these responses and feed them as additional speaker-specific context to our network to score a particular response. We compare our technique with strong baselines and find that such modeling improves the model's average performance by 6.92% (maximum = 12.86%, minimum = 4.51%). We further show both quantitative and qualitative insights into the importance of this additional context in solving the problem of ASS.
Weakly-supervised word-level pronunciation error detection in non-native English speech
We propose a weakly-supervised model for word-level mispronunciation detection in non-native (L2) English speech. To train this model, phonetically transcribed L2 speech is not required and we only need to mark mispronounced words. The lack of phonetic transcriptions for L2 speech means that the model has to learn only from a weak signal of word-level mispronunciations. Because of that and due to the limited amount of mispronounced L2 speech, the model is more likely to overfit. To limit this risk, we train it in a multi-task setup. In the first task, we estimate the probabilities of word-level mispronunciation. For the second task, we use a phoneme recognizer trained on phonetically transcribed L1 speech that is easily accessible and can be automatically annotated. Compared to state-of-the-art approaches, we improve the accuracy of detecting word-level pronunciation errors in AUC metric by 30% on the GUT Isle Corpus of L2 Polish speakers, and by 21.5% on the Isle Corpus of L2 German and Italian speakers.
Libri-Light: A Benchmark for ASR with Limited or No Supervision
We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art.
Multi-View Multi-Task Representation Learning for Mispronunciation Detection
The disparity in phonology between learner's native (L1) and target (L2) language poses a significant challenge for mispronunciation detection and diagnosis (MDD) systems. This challenge is further intensified by lack of annotated L2 data. This paper proposes a novel MDD architecture that exploits multiple `views' of the same input data assisted by auxiliary tasks to learn more distinctive phonetic representation in a low-resource setting. Using the mono- and multilingual encoders, the model learn multiple views of the input, and capture the sound properties across diverse languages and accents. These encoded representations are further enriched by learning articulatory features in a multi-task setup. Our reported results using the L2-ARCTIC data outperformed the SOTA models, with a phoneme error rate reduction of 11.13% and 8.60% and absolute F1 score increase of 5.89%, and 2.49% compared to the single-view mono- and multilingual systems, with a limited L2 dataset.
TIA: A Teaching Intonation Assessment Dataset in Real Teaching Situations
Intonation is one of the important factors affecting the teaching language arts, so it is an urgent problem to be addressed by evaluating the teachers' intonation through artificial intelligence technology. However, the lack of an intonation assessment dataset has hindered the development of the field. To this end, this paper constructs a Teaching Intonation Assessment (TIA) dataset for the first time in real teaching situations. This dataset covers 9 disciplines, 396 teachers, total of 11,444 utterance samples with a length of 15 seconds. In order to test the validity of the dataset, this paper proposes a teaching intonation assessment model (TIAM) based on low-level and deep-level features of speech. The experimental results show that TIAM based on the dataset constructed in this paper is basically consistent with the results of manual evaluation, and the results are better than the baseline models, which proves the effectiveness of the evaluation model.
WenetSpeech-Chuan: A Large-Scale Sichuanese Corpus with Rich Annotation for Dialectal Speech Processing
The scarcity of large-scale, open-source data for dialects severely hinders progress in speech technology, a challenge particularly acute for the widely spoken Sichuanese dialects of Chinese. To address this critical gap, we introduce WenetSpeech-Chuan, a 10,000-hour, richly annotated corpus constructed using our novel Chuan-Pipeline, a complete data processing framework for dialectal speech. To facilitate rigorous evaluation and demonstrate the corpus's effectiveness, we also release high-quality ASR and TTS benchmarks, WenetSpeech-Chuan-Eval, with manually verified transcriptions. Experiments show that models trained on WenetSpeech-Chuan achieve state-of-the-art performance among open-source systems and demonstrate results comparable to commercial services. As the largest open-source corpus for Sichuanese dialects, WenetSpeech-Chuan not only lowers the barrier to research in dialectal speech processing but also plays a crucial role in promoting AI equity and mitigating bias in speech technologies. The corpus, benchmarks, models, and receipts are publicly available on our project page.
EvalYaks: Instruction Tuning Datasets and LoRA Fine-tuned Models for Automated Scoring of CEFR B2 Speaking Assessment Transcripts
Relying on human experts to evaluate CEFR speaking assessments in an e-learning environment creates scalability challenges, as it limits how quickly and widely assessments can be conducted. We aim to automate the evaluation of CEFR B2 English speaking assessments in e-learning environments from conversation transcripts. First, we evaluate the capability of leading open source and commercial Large Language Models (LLMs) to score a candidate's performance across various criteria in the CEFR B2 speaking exam in both global and India-specific contexts. Next, we create a new expert-validated, CEFR-aligned synthetic conversational dataset with transcripts that are rated at different assessment scores. In addition, new instruction-tuned datasets are developed from the English Vocabulary Profile (up to CEFR B2 level) and the CEFR-SP WikiAuto datasets. Finally, using these new datasets, we perform parameter efficient instruction tuning of Mistral Instruct 7B v0.2 to develop a family of models called EvalYaks. Four models in this family are for assessing the four sections of the CEFR B2 speaking exam, one for identifying the CEFR level of vocabulary and generating level-specific vocabulary, and another for detecting the CEFR level of text and generating level-specific text. EvalYaks achieved an average acceptable accuracy of 96%, a degree of variation of 0.35 levels, and performed 3 times better than the next best model. This demonstrates that a 7B parameter LLM instruction tuned with high-quality CEFR-aligned assessment data can effectively evaluate and score CEFR B2 English speaking assessments, offering a promising solution for scalable, automated language proficiency evaluation.
The Accented English Speech Recognition Challenge 2020: Open Datasets, Tracks, Baselines, Results and Methods
The variety of accents has posed a big challenge to speech recognition. The Accented English Speech Recognition Challenge (AESRC2020) is designed for providing a common testbed and promoting accent-related research. Two tracks are set in the challenge -- English accent recognition (track 1) and accented English speech recognition (track 2). A set of 160 hours of accented English speech collected from 8 countries is released with labels as the training set. Another 20 hours of speech without labels is later released as the test set, including two unseen accents from another two countries used to test the model generalization ability in track 2. We also provide baseline systems for the participants. This paper first reviews the released dataset, track setups, baselines and then summarizes the challenge results and major techniques used in the submissions.
The Norwegian Parliamentary Speech Corpus
The Norwegian Parliamentary Speech Corpus (NPSC) is a speech dataset with recordings of meetings from Stortinget, the Norwegian parliament. It is the first, publicly available dataset containing unscripted, Norwegian speech designed for training of automatic speech recognition (ASR) systems. The recordings are manually transcribed and annotated with language codes and speakers, and there are detailed metadata about the speakers. The transcriptions exist in both normalized and non-normalized form, and non-standardized words are explicitly marked and annotated with standardized equivalents. To test the usefulness of this dataset, we have compared an ASR system trained on the NPSC with a baseline system trained on only manuscript-read speech. These systems were tested on an independent dataset containing spontaneous, dialectal speech. The NPSC-trained system performed significantly better, with a 22.9% relative improvement in word error rate (WER). Moreover, training on the NPSC is shown to have a "democratizing" effect in terms of dialects, as improvements are generally larger for dialects with higher WER from the baseline system.
Beyond Orthography: Automatic Recovery of Short Vowels and Dialectal Sounds in Arabic
This paper presents a novel Dialectal Sound and Vowelization Recovery framework, designed to recognize borrowed and dialectal sounds within phonologically diverse and dialect-rich languages, that extends beyond its standard orthographic sound sets. The proposed framework utilized a quantized sequence of input with(out) continuous pretrained self-supervised representation. We show the efficacy of the pipeline using limited data for Arabic, a dialect-rich language containing more than 22 major dialects. Phonetically correct transcribed speech resources for dialectal Arabic are scarce. Therefore, we introduce ArabVoice15, a first-of-its-kind, curated test set featuring 5 hours of dialectal speech across 15 Arab countries, with phonetically accurate transcriptions, including borrowed and dialect-specific sounds. We described in detail the annotation guideline along with the analysis of the dialectal confusion pairs. Our extensive evaluation includes both subjective -- human perception tests and objective measures. Our empirical results, reported with three test sets, show that with only one and half hours of training data, our model improve character error rate by ~ 7\% in ArabVoice15 compared to the baseline.
InstructTTSEval: Benchmarking Complex Natural-Language Instruction Following in Text-to-Speech Systems
In modern speech synthesis, paralinguistic information--such as a speaker's vocal timbre, emotional state, and dynamic prosody--plays a critical role in conveying nuance beyond mere semantics. Traditional Text-to-Speech (TTS) systems rely on fixed style labels or inserting a speech prompt to control these cues, which severely limits flexibility. Recent attempts seek to employ natural-language instructions to modulate paralinguistic features, substantially improving the generalization of instruction-driven TTS models. Although many TTS systems now support customized synthesis via textual description, their actual ability to interpret and execute complex instructions remains largely unexplored. In addition, there is still a shortage of high-quality benchmarks and automated evaluation metrics specifically designed for instruction-based TTS, which hinders accurate assessment and iterative optimization of these models. To address these limitations, we introduce InstructTTSEval, a benchmark for measuring the capability of complex natural-language style control. We introduce three tasks, namely Acoustic-Parameter Specification, Descriptive-Style Directive, and Role-Play, including English and Chinese subsets, each with 1k test cases (6k in total) paired with reference audio. We leverage Gemini as an automatic judge to assess their instruction-following abilities. Our evaluation of accessible instruction-following TTS systems highlights substantial room for further improvement. We anticipate that InstructTTSEval will drive progress toward more powerful, flexible, and accurate instruction-following TTS.
Development of an NLP-driven computer-based test guide for visually impaired students
In recent years, advancements in Natural Language Processing (NLP) techniques have revolutionized the field of accessibility and exclusivity of testing, particularly for visually impaired students (VIS). CBT has shown in years back its relevance in terms of administering exams electronically, making the test process easier, providing quicker and more accurate results, and offering greater flexibility and accessibility for candidates. Yet, its relevance was not felt by the visually impaired students as they cannot access printed documents. Hence, in this paper, we present an NLP-driven Computer-Based Test guide for visually impaired students. It employs a speech technology pre-trained methods to provide real-time assistance and support to visually impaired students. The system utilizes NLP technologies to convert the text-based questions and the associated options in a machine-readable format. Subsequently, the speech technology pre-trained model processes the converted text enabling the VIS to comprehend and analyze the content. Furthermore, we validated that this pre-trained model is not perverse by testing for accuracy using sample audio datasets labels (A, B, C, D, E, F, G) to compare with the voice recordings obtained from 20 VIS which is been predicted by the system to attain values for precision, recall, and F1-scores. These metrics are used to assess the performance of the pre-trained model and have indicated that it is proficient enough to give its better performance to the evaluated system. The methodology adopted for this system is Object Oriented Analysis and Design Methodology (OOADM) where Objects are discussed and built by modeling real-world instances.
An ensemble-based framework for mispronunciation detection of Arabic phonemes
Determination of mispronunciations and ensuring feedback to users are maintained by computer-assisted language learning (CALL) systems. In this work, we introduce an ensemble model that defines the mispronunciation of Arabic phonemes and assists learning of Arabic, effectively. To the best of our knowledge, this is the very first attempt to determine the mispronunciations of Arabic phonemes employing ensemble learning techniques and conventional machine learning models, comprehensively. In order to observe the effect of feature extraction techniques, mel-frequency cepstrum coefficients (MFCC), and Mel spectrogram are blended with each learning algorithm. To show the success of proposed model, 29 letters in the Arabic phonemes, 8 of which are hafiz, are voiced by a total of 11 different person. The amount of data set has been enhanced employing the methods of adding noise, time shifting, time stretching, pitch shifting. Extensive experiment results demonstrate that the utilization of voting classifier as an ensemble algorithm with Mel spectrogram feature extraction technique exhibits remarkable classification result with 95.9% of accuracy.
Leveraging Data Collection and Unsupervised Learning for Code-switched Tunisian Arabic Automatic Speech Recognition
Crafting an effective Automatic Speech Recognition (ASR) solution for dialects demands innovative approaches that not only address the data scarcity issue but also navigate the intricacies of linguistic diversity. In this paper, we address the aforementioned ASR challenge, focusing on the Tunisian dialect. First, textual and audio data is collected and in some cases annotated. Second, we explore self-supervision, semi-supervision and few-shot code-switching approaches to push the state-of-the-art on different Tunisian test sets; covering different acoustic, linguistic and prosodic conditions. Finally, and given the absence of conventional spelling, we produce a human evaluation of our transcripts to avoid the noise coming from spelling inadequacies in our testing references. Our models, allowing to transcribe audio samples in a linguistic mix involving Tunisian Arabic, English and French, and all the data used during training and testing are released for public use and further improvements.
A Two-Step Approach for Data-Efficient French Pronunciation Learning
Recent studies have addressed intricate phonological phenomena in French, relying on either extensive linguistic knowledge or a significant amount of sentence-level pronunciation data. However, creating such resources is expensive and non-trivial. To this end, we propose a novel two-step approach that encompasses two pronunciation tasks: grapheme-to-phoneme and post-lexical processing. We then investigate the efficacy of the proposed approach with a notably limited amount of sentence-level pronunciation data. Our findings demonstrate that the proposed two-step approach effectively mitigates the lack of extensive labeled data, and serves as a feasible solution for addressing French phonological phenomena even under resource-constrained environments.
Earnings-22: A Practical Benchmark for Accents in the Wild
Modern automatic speech recognition (ASR) systems have achieved superhuman Word Error Rate (WER) on many common corpora despite lacking adequate performance on speech in the wild. Beyond that, there is a lack of real-world, accented corpora to properly benchmark academic and commercial models. To ensure this type of speech is represented in ASR benchmarking, we present Earnings-22, a 125 file, 119 hour corpus of English-language earnings calls gathered from global companies. We run a comparison across 4 commercial models showing the variation in performance when taking country of origin into consideration. Looking at hypothesis transcriptions, we explore errors common to all ASR systems tested. By examining Individual Word Error Rate (IWER), we find that key speech features impact model performance more for certain accents than others. Earnings-22 provides a free-to-use benchmark of real-world, accented audio to bridge academic and industrial research.
SD-QA: Spoken Dialectal Question Answering for the Real World
Question answering (QA) systems are now available through numerous commercial applications for a wide variety of domains, serving millions of users that interact with them via speech interfaces. However, current benchmarks in QA research do not account for the errors that speech recognition models might introduce, nor do they consider the language variations (dialects) of the users. To address this gap, we augment an existing QA dataset to construct a multi-dialect, spoken QA benchmark on five languages (Arabic, Bengali, English, Kiswahili, Korean) with more than 68k audio prompts in 24 dialects from 255 speakers. We provide baseline results showcasing the real-world performance of QA systems and analyze the effect of language variety and other sensitive speaker attributes on downstream performance. Last, we study the fairness of the ASR and QA models with respect to the underlying user populations. The dataset, model outputs, and code for reproducing all our experiments are available: https://github.com/ffaisal93/SD-QA.
EmergentTTS-Eval: Evaluating TTS Models on Complex Prosodic, Expressiveness, and Linguistic Challenges Using Model-as-a-Judge
Text-to-Speech (TTS) benchmarks often fail to capture how well models handle nuanced and semantically complex text. Building on EmergentTTS, we introduce EmergentTTS-Eval, a comprehensive benchmark covering six challenging TTS scenarios: emotions, paralinguistics, foreign words, syntactic complexity, complex pronunciation (e.g. URLs, formulas), and questions. Crucially, our framework automates both test-case generation and evaluation, making the benchmark easily extensible. Starting from a small set of human-written seed prompts, we iteratively extend them using LLMs to target specific structural, phonetic and prosodic challenges, resulting in 1,645 diverse test cases. Moreover, we employ a model-as-a-judge approach, using a Large Audio Language Model (LALM) to assess the speech across multiple dimensions such as expressed emotion, prosodic, intonational, and pronunciation accuracy. We evaluate state-of-the-art open-source and proprietary TTS systems, such as 11Labs, Deepgram, and OpenAI's 4o-mini-TTS, on EmergentTTS-Eval, demonstrating its ability to reveal fine-grained performance differences. Results show that the model-as-a-judge approach offers robust TTS assessment and a high correlation with human preferences. We open source the evaluation https://github.com/boson-ai/EmergentTTS-Eval-public{code} and the https://huggingface.co/datasets/bosonai/EmergentTTS-Eval{dataset}.
Mixtures of Deep Neural Experts for Automated Speech Scoring
The paper copes with the task of automatic assessment of second language proficiency from the language learners' spoken responses to test prompts. The task has significant relevance to the field of computer assisted language learning. The approach presented in the paper relies on two separate modules: (1) an automatic speech recognition system that yields text transcripts of the spoken interactions involved, and (2) a multiple classifier system based on deep learners that ranks the transcripts into proficiency classes. Different deep neural network architectures (both feed-forward and recurrent) are specialized over diverse representations of the texts in terms of: a reference grammar, the outcome of probabilistic language models, several word embeddings, and two bag-of-word models. Combination of the individual classifiers is realized either via a probabilistic pseudo-joint model, or via a neural mixture of experts. Using the data of the third Spoken CALL Shared Task challenge, the highest values to date were obtained in terms of three popular evaluation metrics.
A Novel Speech Analysis and Correction Tool for Arabic-Speaking Children
This paper introduces a new application named ArPA for Arabic kids who have trouble with pronunciation. Our application comprises two key components: the diagnostic module and the therapeutic module. The diagnostic process involves capturing the child's speech signal, preprocessing, and analyzing it using different machine learning classifiers like K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Decision Trees as well as deep neural network classifiers like ResNet18. The therapeutic module offers eye-catching gamified interfaces in which each correctly spoken letter earns a higher avatar level, providing positive reinforcement for the child's pronunciation improvement. Two datasets were used for experimental evaluation: one from a childcare centre and the other including Arabic alphabet pronunciation recordings. Our work uses a novel technique for speech recognition using Melspectrogram and MFCC images. The results show that the ResNet18 classifier on speech-to-image converted data effectively identifies mispronunciations in Arabic speech with an accuracy of 99.015\% with Mel-Spectrogram images outperforming ResNet18 with MFCC images.
Enhancing Child Vocalization Classification in Multi-Channel Child-Adult Conversations Through Wav2vec2 Children ASR Features
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that often emerges in early childhood. ASD assessment typically involves an observation protocol including note-taking and ratings of child's social behavior conducted by a trained clinician. A robust machine learning (ML) model that is capable of labeling adult and child audio has the potential to save significant time and labor in manual coding children's behaviors. This may assist clinicians capture events of interest, better communicate events with parents, and educate new clinicians. In this study, we leverage the self-supervised learning model, Wav2Vec 2.0 (W2V2), pretrained on 4300h of home recordings of children under 5 years old, to build a unified system that performs both speaker diarization (SD) and vocalization classification (VC) tasks. We apply this system to two-channel audio recordings of brief 3-5 minute clinician-child interactions using the Rapid-ABC corpus. We propose a novel technique by introducing auxiliary features extracted from W2V2-based automatic speech recognition (ASR) system for children under 4 years old to improve children's VC task. We test our proposed method of improving children's VC task on two corpora (Rapid-ABC and BabbleCor) and observe consistent improvements. Furthermore, we reach, or perhaps outperform, the state-of-the-art performance of BabbleCor.
Automatic Speech Recognition of Low-Resource Languages Based on Chukchi
The following paper presents a project focused on the research and creation of a new Automatic Speech Recognition (ASR) based in the Chukchi language. There is no one complete corpus of the Chukchi language, so most of the work consisted in collecting audio and texts in the Chukchi language from open sources and processing them. We managed to collect 21:34:23 hours of audio recordings and 112,719 sentences (or 2,068,273 words) of text in the Chukchi language. The XLSR model was trained on the obtained data, which showed good results even with a small amount of data. Besides the fact that the Chukchi language is a low-resource language, it is also polysynthetic, which significantly complicates any automatic processing. Thus, the usual WER metric for evaluating ASR becomes less indicative for a polysynthetic language. However, the CER metric showed good results. The question of metrics for polysynthetic languages remains open.
NADI 2025: The First Multidialectal Arabic Speech Processing Shared Task
We present the findings of the sixth Nuanced Arabic Dialect Identification (NADI 2025) Shared Task, which focused on Arabic speech dialect processing across three subtasks: spoken dialect identification (Subtask 1), speech recognition (Subtask 2), and diacritic restoration for spoken dialects (Subtask 3). A total of 44 teams registered, and during the testing phase, 100 valid submissions were received from eight unique teams. The distribution was as follows: 34 submissions for Subtask 1 "five teams{\ae}, 47 submissions for Subtask 2 "six teams", and 19 submissions for Subtask 3 "two teams". The best-performing systems achieved 79.8% accuracy on Subtask 1, 35.68/12.20 WER/CER (overall average) on Subtask 2, and 55/13 WER/CER on Subtask 3. These results highlight the ongoing challenges of Arabic dialect speech processing, particularly in dialect identification, recognition, and diacritic restoration. We also summarize the methods adopted by participating teams and briefly outline directions for future editions of NADI.
Syllabification of the Divine Comedy
We provide a syllabification algorithm for the Divine Comedy using techniques from probabilistic and constraint programming. We particularly focus on the synalephe, addressed in terms of the "propensity" of a word to take part in a synalephe with adjacent words. We jointly provide an online vocabulary containing, for each word, information about its syllabification, the location of the tonic accent, and the aforementioned synalephe propensity, on the left and right sides. The algorithm is intrinsically nondeterministic, producing different possible syllabifications for each verse, with different likelihoods; metric constraints relative to accents on the 10th, 4th and 6th syllables are used to further reduce the solution space. The most likely syllabification is hence returned as output. We believe that this work could be a major milestone for a lot of different investigations. From the point of view of digital humanities it opens new perspectives on computer assisted analysis of digital sources, comprising automated detection of anomalous and problematic cases, metric clustering of verses and their categorization, or more foundational investigations addressing e.g. the phonetic roles of consonants and vowels. From the point of view of text processing and deep learning, information about syllabification and the location of accents opens a wide range of exciting perspectives, from the possibility of automatic learning syllabification of words and verses, to the improvement of generative models, aware of metric issues, and more respectful of the expected musicality.
Mispronunciation detection using self-supervised speech representations
In recent years, self-supervised learning (SSL) models have produced promising results in a variety of speech-processing tasks, especially in contexts of data scarcity. In this paper, we study the use of SSL models for the task of mispronunciation detection for second language learners. We compare two downstream approaches: 1) training the model for phone recognition (PR) using native English data, and 2) training a model directly for the target task using non-native English data. We compare the performance of these two approaches for various SSL representations as well as a representation extracted from a traditional DNN-based speech recognition model. We evaluate the models on L2Arctic and EpaDB, two datasets of non-native speech annotated with pronunciation labels at the phone level. Overall, we find that using a downstream model trained for the target task gives the best performance and that most upstream models perform similarly for the task.
Svarah: Evaluating English ASR Systems on Indian Accents
India is the second largest English-speaking country in the world with a speaker base of roughly 130 million. Thus, it is imperative that automatic speech recognition (ASR) systems for English should be evaluated on Indian accents. Unfortunately, Indian speakers find a very poor representation in existing English ASR benchmarks such as LibriSpeech, Switchboard, Speech Accent Archive, etc. In this work, we address this gap by creating Svarah, a benchmark that contains 9.6 hours of transcribed English audio from 117 speakers across 65 geographic locations throughout India, resulting in a diverse range of accents. Svarah comprises both read speech and spontaneous conversational data, covering various domains, such as history, culture, tourism, etc., ensuring a diverse vocabulary. We evaluate 6 open source ASR models and 2 commercial ASR systems on Svarah and show that there is clear scope for improvement on Indian accents. Svarah as well as all our code will be publicly available.
WenetSpeech-Yue: A Large-scale Cantonese Speech Corpus with Multi-dimensional Annotation
The development of speech understanding and generation has been significantly accelerated by the availability of large-scale, high-quality speech datasets. Among these, ASR and TTS are regarded as the most established and fundamental tasks. However, for Cantonese (Yue Chinese), spoken by approximately 84.9 million native speakers worldwide, limited annotated resources have hindered progress and resulted in suboptimal ASR and TTS performance. To address this challenge, we propose WenetSpeech-Pipe, an integrated pipeline for building large-scale speech corpus with multi-dimensional annotation tailored for speech understanding and generation. It comprises six modules: Audio Collection, Speaker Attributes Annotation, Speech Quality Annotation, Automatic Speech Recognition, Text Postprocessing and Recognizer Output Voting, enabling rich and high-quality annotations. Based on this pipeline, we release WenetSpeech-Yue, the first large-scale Cantonese speech corpus with multi-dimensional annotation for ASR and TTS, covering 21,800 hours across 10 domains with annotations including ASR transcription, text confidence, speaker identity, age, gender, speech quality scores, among other annotations. We also release WSYue-eval, a comprehensive Cantonese benchmark with two components: WSYue-ASR-eval, a manually annotated set for evaluating ASR on short and long utterances, code-switching, and diverse acoustic conditions, and WSYue-TTS-eval, with base and coverage subsets for standard and generalization testing. Experimental results show that models trained on WenetSpeech-Yue achieve competitive results against state-of-the-art (SOTA) Cantonese ASR and TTS systems, including commercial and LLM-based models, highlighting the value of our dataset and pipeline.
LID Models are Actually Accent Classifiers: Implications and Solutions for LID on Accented Speech
Prior research indicates that LID model performance significantly declines on accented speech; however, the specific causes, extent, and characterization of these errors remain under-explored. (i) We identify a common failure mode on accented speech whereby LID systems often misclassify L2 accented speech as the speaker's native language or a related language. (ii) We present evidence suggesting that state-of-the-art models are invariant to permutations of short spans of speech, implying they classify on the basis of short phonotactic features indicative of accent rather than language. Our analysis reveals a simple method to enhance model robustness to accents through input chunking. (iii) We present an approach that integrates sequence-level information into our model without relying on monolingual ASR systems; this reduces accent-language confusion and significantly enhances performance on accented speech while maintaining comparable results on standard LID.
MediaSpeech: Multilanguage ASR Benchmark and Dataset
The performance of automated speech recognition (ASR) systems is well known to differ for varied application domains. At the same time, vendors and research groups typically report ASR quality results either for limited use simplistic domains (audiobooks, TED talks), or proprietary datasets. To fill this gap, we provide an open-source 10-hour ASR system evaluation dataset NTR MediaSpeech for 4 languages: Spanish, French, Turkish and Arabic. The dataset was collected from the official youtube channels of media in the respective languages, and manually transcribed. We estimate that the WER of the dataset is under 5%. We have benchmarked many ASR systems available both commercially and freely, and provide the benchmark results. We also open-source baseline QuartzNet models for each language.
WenetSpeech: A 10000+ Hours Multi-domain Mandarin Corpus for Speech Recognition
In this paper, we present WenetSpeech, a multi-domain Mandarin corpus consisting of 10000+ hours high-quality labeled speech, 2400+ hours weakly labeled speech, and about 10000 hours unlabeled speech, with 22400+ hours in total. We collect the data from YouTube and Podcast, which covers a variety of speaking styles, scenarios, domains, topics, and noisy conditions. An optical character recognition (OCR) based method is introduced to generate the audio/text segmentation candidates for the YouTube data on its corresponding video captions, while a high-quality ASR transcription system is used to generate audio/text pair candidates for the Podcast data. Then we propose a novel end-to-end label error detection approach to further validate and filter the candidates. We also provide three manually labelled high-quality test sets along with WenetSpeech for evaluation -- Dev for cross-validation purpose in training, Test_Net, collected from Internet for matched test, and Test\_Meeting, recorded from real meetings for more challenging mismatched test. Baseline systems trained with WenetSpeech are provided for three popular speech recognition toolkits, namely Kaldi, ESPnet, and WeNet, and recognition results on the three test sets are also provided as benchmarks. To the best of our knowledge, WenetSpeech is the current largest open-sourced Mandarin speech corpus with transcriptions, which benefits research on production-level speech recognition.
Podcast Summary Assessment: A Resource for Evaluating Summary Assessment Methods
Automatic summary assessment is useful for both machine-generated and human-produced summaries. Automatically evaluating the summary text given the document enables, for example, summary generation system development and detection of inappropriate summaries. Summary assessment can be run in a number of modes: ranking summary generation systems; ranking summaries of a particular document; and estimating the quality of a document-summary pair on an absolute scale. Existing datasets with annotation for summary assessment are usually based on news summarization datasets such as CNN/DailyMail or XSum. In this work, we describe a new dataset, the podcast summary assessment corpus, a collection of podcast summaries that were evaluated by human experts at TREC2020. Compared to existing summary assessment data, this dataset has two unique aspects: (i) long-input, speech podcast based, documents; and (ii) an opportunity to detect inappropriate reference summaries in podcast corpus. First, we examine existing assessment methods, including model-free and model-based methods, and provide benchmark results for this long-input summary assessment dataset. Second, with the aim of filtering reference summary-document pairings for training, we apply summary assessment for data selection. The experimental results on these two aspects provide interesting insights on the summary assessment and generation tasks. The podcast summary assessment data is available.
Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
ChildMandarin: A Comprehensive Mandarin Speech Dataset for Young Children Aged 3-5
Automatic speech recognition (ASR) systems have advanced significantly with models like Whisper, Conformer, and self-supervised frameworks such as Wav2vec 2.0 and HuBERT. However, developing robust ASR models for young children's speech remains challenging due to differences in pronunciation, tone, and pace compared to adult speech. In this paper, we introduce a new Mandarin speech dataset focused on children aged 3 to 5, addressing the scarcity of resources in this area. The dataset comprises 41.25 hours of speech with carefully crafted manual transcriptions, collected from 397 speakers across various provinces in China, with balanced gender representation. We provide a comprehensive analysis of speaker demographics, speech duration distribution and geographic coverage. Additionally, we evaluate ASR performance on models trained from scratch, such as Conformer, as well as fine-tuned pre-trained models like HuBERT and Whisper, where fine-tuning demonstrates significant performance improvements. Furthermore, we assess speaker verification (SV) on our dataset, showing that, despite the challenges posed by the unique vocal characteristics of young children, the dataset effectively supports both ASR and SV tasks. This dataset is a valuable contribution to Mandarin child speech research and holds potential for applications in educational technology and child-computer interaction. It will be open-source and freely available for all academic purposes.
LAHAJA: A Robust Multi-accent Benchmark for Evaluating Hindi ASR Systems
Hindi, one of the most spoken language of India, exhibits a diverse array of accents due to its usage among individuals from diverse linguistic origins. To enable a robust evaluation of Hindi ASR systems on multiple accents, we create a benchmark, LAHAJA, which contains read and extempore speech on a diverse set of topics and use cases, with a total of 12.5 hours of Hindi audio, sourced from 132 speakers spanning 83 districts of India. We evaluate existing open-source and commercial models on LAHAJA and find their performance to be poor. We then train models using different datasets and find that our model trained on multilingual data with good speaker diversity outperforms existing models by a significant margin. We also present a fine-grained analysis which shows that the performance declines for speakers from North-East and South India, especially with content heavy in named entities and specialized terminology.
InQSS: a speech intelligibility and quality assessment model using a multi-task learning network
Speech intelligibility and quality assessment models are essential tools for researchers to evaluate and improve speech processing models. However, only a few studies have investigated multi-task models for intelligibility and quality assessment due to the limitations of available data. In this study, we released TMHINT-QI, the first Chinese speech dataset that records the quality and intelligibility scores of clean, noisy, and enhanced utterances. Then, we propose InQSS, a non-intrusive multi-task learning framework for intelligibility and quality assessment. We evaluated the InQSS on both the training-from-scratch and the pretrained models. The experimental results confirm the effectiveness of the InQSS framework. In addition, the resulting model can predict not only the intelligibility scores but also the quality scores of a speech signal.
You don't understand me!: Comparing ASR results for L1 and L2 speakers of Swedish
The performance of Automatic Speech Recognition (ASR) systems has constantly increased in state-of-the-art development. However, performance tends to decrease considerably in more challenging conditions (e.g., background noise, multiple speaker social conversations) and with more atypical speakers (e.g., children, non-native speakers or people with speech disorders), which signifies that general improvements do not necessarily transfer to applications that rely on ASR, e.g., educational software for younger students or language learners. In this study, we focus on the gap in performance between recognition results for native and non-native, read and spontaneous, Swedish utterances transcribed by different ASR services. We compare the recognition results using Word Error Rate and analyze the linguistic factors that may generate the observed transcription errors.
VoiceAssistant-Eval: Benchmarking AI Assistants across Listening, Speaking, and Viewing
The growing capabilities of large language models and multimodal systems have spurred interest in voice-first AI assistants, yet existing benchmarks are inadequate for evaluating the full range of these systems' capabilities. We introduce VoiceAssistant-Eval, a comprehensive benchmark designed to assess AI assistants across listening, speaking, and viewing. VoiceAssistant-Eval comprises 10,497 curated examples spanning 13 task categories. These tasks include natural sounds, music, and spoken dialogue for listening; multi-turn dialogue, role-play imitation, and various scenarios for speaking; and highly heterogeneous images for viewing. To demonstrate its utility, we evaluate 21 open-source models and GPT-4o-Audio, measuring the quality of the response content and speech, as well as their consistency. The results reveal three key findings: (1) proprietary models do not universally outperform open-source models; (2) most models excel at speaking tasks but lag in audio understanding; and (3) well-designed smaller models can rival much larger ones. Notably, the mid-sized Step-Audio-2-mini (7B) achieves more than double the listening accuracy of LLaMA-Omni2-32B-Bilingual. However, challenges remain: multimodal (audio plus visual) input and role-play voice imitation tasks are difficult for current models, and significant gaps persist in robustness and safety alignment. VoiceAssistant-Eval identifies these gaps and establishes a rigorous framework for evaluating and guiding the development of next-generation AI assistants. Code and data will be released at https://mathllm.github.io/VoiceAssistantEval/ .
QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions
This paper explores a novel perspective to speech quality assessment by leveraging natural language descriptions, offering richer, more nuanced insights than traditional numerical scoring methods. Natural language feedback provides instructive recommendations and detailed evaluations, yet existing datasets lack the comprehensive annotations needed for this approach. To bridge this gap, we introduce QualiSpeech, a comprehensive low-level speech quality assessment dataset encompassing 11 key aspects and detailed natural language comments that include reasoning and contextual insights. Additionally, we propose the QualiSpeech Benchmark to evaluate the low-level speech understanding capabilities of auditory large language models (LLMs). Experimental results demonstrate that finetuned auditory LLMs can reliably generate detailed descriptions of noise and distortion, effectively identifying their types and temporal characteristics. The results further highlight the potential for incorporating reasoning to enhance the accuracy and reliability of quality assessments. The dataset will be released at https://huggingface.co/datasets/tsinghua-ee/QualiSpeech.
Rethinking MUSHRA: Addressing Modern Challenges in Text-to-Speech Evaluation
Despite rapid advancements in TTS models, a consistent and robust human evaluation framework is still lacking. For example, MOS tests fail to differentiate between similar models, and CMOS's pairwise comparisons are time-intensive. The MUSHRA test is a promising alternative for evaluating multiple TTS systems simultaneously, but in this work we show that its reliance on matching human reference speech unduly penalises the scores of modern TTS systems that can exceed human speech quality. More specifically, we conduct a comprehensive assessment of the MUSHRA test, focusing on its sensitivity to factors such as rater variability, listener fatigue, and reference bias. Based on our extensive evaluation involving 471 human listeners across Hindi and Tamil we identify two primary shortcomings: (i) reference-matching bias, where raters are unduly influenced by the human reference, and (ii) judgement ambiguity, arising from a lack of clear fine-grained guidelines. To address these issues, we propose two refined variants of the MUSHRA test. The first variant enables fairer ratings for synthesized samples that surpass human reference quality. The second variant reduces ambiguity, as indicated by the relatively lower variance across raters. By combining these approaches, we achieve both more reliable and more fine-grained assessments. We also release MANGO, a massive dataset of 47,100 human ratings, the first-of-its-kind collection for Indian languages, aiding in analyzing human preferences and developing automatic metrics for evaluating TTS systems.
LLM Comparative Assessment: Zero-shot NLG Evaluation through Pairwise Comparisons using Large Language Models
Current developments in large language models (LLMs) have enabled impressive zero-shot capabilities across various natural language tasks. An interesting application of these systems is in the automated assessment of natural language generation (NLG), a highly challenging area with great practical benefit. In this paper, we explore two options for exploiting the emergent abilities of LLMs for zero-shot NLG assessment: absolute score prediction, and comparative assessment which uses relative comparisons between pairs of candidates. Though comparative assessment has not been extensively studied in NLG assessment, we note that humans often find it more intuitive to compare two options rather than scoring each one independently. This work examines comparative assessment from multiple perspectives: performance compared to absolute grading; positional biases in the prompt; and efficient ranking in terms of the number of comparisons. We illustrate that LLM comparative assessment is a simple, general and effective approach for NLG assessment. For moderate-sized open-source LLMs, such as FlanT5 and Llama2-chat, comparative assessment is superior to prompt scoring, and in many cases can achieve performance competitive with state-of-the-art methods. Additionally, we demonstrate that LLMs often exhibit strong positional biases when making pairwise comparisons, and we propose debiasing methods that can further improve performance.
A Study on Incorporating Whisper for Robust Speech Assessment
This research introduces an enhanced version of the multi-objective speech assessment model--MOSA-Net+, by leveraging the acoustic features from Whisper, a large-scaled weakly supervised model. We first investigate the effectiveness of Whisper in deploying a more robust speech assessment model. After that, we explore combining representations from Whisper and SSL models. The experimental results reveal that Whisper's embedding features can contribute to more accurate prediction performance. Moreover, combining the embedding features from Whisper and SSL models only leads to marginal improvement. As compared to intrusive methods, MOSA-Net, and other SSL-based speech assessment models, MOSA-Net+ yields notable improvements in estimating subjective quality and intelligibility scores across all evaluation metrics in Taiwan Mandarin Hearing In Noise test - Quality & Intelligibility (TMHINT-QI) dataset. To further validate its robustness, MOSA-Net+ was tested in the noisy-and-enhanced track of the VoiceMOS Challenge 2023, where it obtained the top-ranked performance among nine systems.
WildSpeech-Bench: Benchmarking Audio LLMs in Natural Speech Conversation
Recent multi-modal Large Language Models (LLMs) such as GPT-4o have demonstrated strong capabilities of direct speech interaction. However, the lack of specialized and comprehensive benchmarks for end-to-end speech LLM evaluation hinders optimizing the user experience of Audio LLMs in real-world applications. Existing evaluation methods often adapt text-based benchmarks, overlooking speech's unique characteristics and challenges, including prosody, homophones, stuttering, and differing user expectations. Here, we present a novel approach to thoroughly evaluate LLMs in practical speech conversations. We systematically curate real-world chat data relevant to spoken scenarios, introduce diversity in speaker attributes and acoustic conditions, and augment the dataset with speech-specific phenomena. We further design a query-aware evaluation method to use customized evaluation checklists and prompts to enhance the accuracy of automatic evaluation. We conduct comprehensive testing and detailed analysis of various mainstream speech models, revealing significant differences in model performance across different speech scenarios. The use of query-aware evaluation further enables a finer-grained assessment under various speech-specific scenarios. Our benchmark can provide valuable insights for speech model development and evaluation.
A Dataset for Automatic Assessment of TTS Quality in Spanish
This work addresses the development of a database for the automatic assessment of text-to-speech (TTS) systems in Spanish, aiming to improve the accuracy of naturalness prediction models. The dataset consists of 4,326 audio samples from 52 different TTS systems and human voices and is, up to our knowledge, the first of its kind in Spanish. To label the audios, a subjective test was designed based on the ITU-T Rec. P.807 standard and completed by 92 participants. Furthermore, the utility of the collected dataset was validated by training automatic naturalness prediction systems. We explored two approaches: fine-tuning an existing model originally trained for English, and training small downstream networks on top of frozen self-supervised speech models. Our models achieve a mean absolute error of 0.8 on a five-point MOS scale. Further analysis demonstrates the quality and diversity of the developed dataset, and its potential to advance TTS research in Spanish.
WavLLM: Towards Robust and Adaptive Speech Large Language Model
The recent advancements in large language models (LLMs) have revolutionized the field of natural language processing, progressively broadening their scope to multimodal perception and generation. However, effectively integrating listening capabilities into LLMs poses significant challenges, particularly with respect to generalizing across varied contexts and executing complex auditory tasks. In this work, we introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter, optimized by a two-stage curriculum learning approach. Leveraging dual encoders, we decouple different types of speech information, utilizing a Whisper encoder to process the semantic content of speech, and a WavLM encoder to capture the unique characteristics of the speaker's identity. Within the curriculum learning framework, WavLLM first builds its foundational capabilities by optimizing on mixed elementary single tasks, followed by advanced multi-task training on more complex tasks such as combinations of the elementary tasks. To enhance the flexibility and adherence to different tasks and instructions, a prompt-aware LoRA weight adapter is introduced in the second advanced multi-task training stage. We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set. Experiments demonstrate that the proposed model achieves state-of-the-art performance across a range of speech tasks on the same model size, exhibiting robust generalization capabilities in executing complex tasks using CoT approach. Furthermore, our model successfully completes Gaokao tasks without specialized training. The codes, models, audio, and Gaokao evaluation set can be accessed at aka.ms/wavllm.
DelightfulTTS: The Microsoft Speech Synthesis System for Blizzard Challenge 2021
This paper describes the Microsoft end-to-end neural text to speech (TTS) system: DelightfulTTS for Blizzard Challenge 2021. The goal of this challenge is to synthesize natural and high-quality speech from text, and we approach this goal in two perspectives: The first is to directly model and generate waveform in 48 kHz sampling rate, which brings higher perception quality than previous systems with 16 kHz or 24 kHz sampling rate; The second is to model the variation information in speech through a systematic design, which improves the prosody and naturalness. Specifically, for 48 kHz modeling, we predict 16 kHz mel-spectrogram in acoustic model, and propose a vocoder called HiFiNet to directly generate 48 kHz waveform from predicted 16 kHz mel-spectrogram, which can better trade off training efficiency, modelling stability and voice quality. We model variation information systematically from both explicit (speaker ID, language ID, pitch and duration) and implicit (utterance-level and phoneme-level prosody) perspectives: 1) For speaker and language ID, we use lookup embedding in training and inference; 2) For pitch and duration, we extract the values from paired text-speech data in training and use two predictors to predict the values in inference; 3) For utterance-level and phoneme-level prosody, we use two reference encoders to extract the values in training, and use two separate predictors to predict the values in inference. Additionally, we introduce an improved Conformer block to better model the local and global dependency in acoustic model. For task SH1, DelightfulTTS achieves 4.17 mean score in MOS test and 4.35 in SMOS test, which indicates the effectiveness of our proposed system
Using multiple ASR hypotheses to boost i18n NLU performance
Current voice assistants typically use the best hypothesis yielded by their Automatic Speech Recognition (ASR) module as input to their Natural Language Understanding (NLU) module, thereby losing helpful information that might be stored in lower-ranked ASR hypotheses. We explore the change in performance of NLU associated tasks when utilizing five-best ASR hypotheses when compared to status quo for two language datasets, German and Portuguese. To harvest information from the ASR five-best, we leverage extractive summarization and joint extractive-abstractive summarization models for Domain Classification (DC) experiments while using a sequence-to-sequence model with a pointer generator network for Intent Classification (IC) and Named Entity Recognition (NER) multi-task experiments. For the DC full test set, we observe significant improvements of up to 7.2% and 15.5% in micro-averaged F1 scores, for German and Portuguese, respectively. In cases where the best ASR hypothesis was not an exact match to the transcribed utterance (mismatched test set), we see improvements of up to 6.7% and 8.8% micro-averaged F1 scores, for German and Portuguese, respectively. For IC and NER multi-task experiments, when evaluating on the mismatched test set, we see improvements across all domains in German and in 17 out of 19 domains in Portuguese (improvements based on change in SeMER scores). Our results suggest that the use of multiple ASR hypotheses, as opposed to one, can lead to significant performance improvements in the DC task for these non-English datasets. In addition, it could lead to significant improvement in the performance of IC and NER tasks in cases where the ASR model makes mistakes.
The Edinburgh International Accents of English Corpus: Towards the Democratization of English ASR
English is the most widely spoken language in the world, used daily by millions of people as a first or second language in many different contexts. As a result, there are many varieties of English. Although the great many advances in English automatic speech recognition (ASR) over the past decades, results are usually reported based on test datasets which fail to represent the diversity of English as spoken today around the globe. We present the first release of The Edinburgh International Accents of English Corpus (EdAcc). This dataset attempts to better represent the wide diversity of English, encompassing almost 40 hours of dyadic video call conversations between friends. Unlike other datasets, EdAcc includes a wide range of first and second-language varieties of English and a linguistic background profile of each speaker. Results on latest public, and commercial models show that EdAcc highlights shortcomings of current English ASR models. The best performing model, trained on 680 thousand hours of transcribed data, obtains an average of 19.7% word error rate (WER) -- in contrast to the 2.7% WER obtained when evaluated on US English clean read speech. Across all models, we observe a drop in performance on Indian, Jamaican, and Nigerian English speakers. Recordings, linguistic backgrounds, data statement, and evaluation scripts are released on our website (https://groups.inf.ed.ac.uk/edacc/) under CC-BY-SA license.
A Dataset for measuring reading levels in India at scale
One out of four children in India are leaving grade eight without basic reading skills. Measuring the reading levels in a vast country like India poses significant hurdles. Recent advances in machine learning opens up the possibility of automating this task. However, the datasets of children's speech are not only rare but are primarily in English. To solve this assessment problem and advance deep learning research in regional Indian languages, we present the ASER dataset of children in the age group of 6-14. The dataset consists of 5,301 subjects generating 81,330 labeled audio clips in Hindi, Marathi and English. These labels represent expert opinions on the child's ability to read at a specified level. Using this dataset, we built a simple ASR-based classifier. Early results indicate that we can achieve a prediction accuracy of 86% for the English language. Considering the ASER survey spans half a million subjects, this dataset can grow to those scales.
Deep Learning for Speaker Identification: Architectural Insights from AB-1 Corpus Analysis and Performance Evaluation
In the fields of security systems, forensic investigations, and personalized services, the importance of speech as a fundamental human input outweighs text-based interactions. This research delves deeply into the complex field of Speaker Identification (SID), examining its essential components and emphasising Mel Spectrogram and Mel Frequency Cepstral Coefficients (MFCC) for feature extraction. Moreover, this study evaluates six slightly distinct model architectures using extensive analysis to evaluate their performance, with hyperparameter tuning applied to the best-performing model. This work performs a linguistic analysis to verify accent and gender accuracy, in addition to bias evaluation within the AB-1 Corpus dataset.
MyVoice: Arabic Speech Resource Collaboration Platform
We introduce MyVoice, a crowdsourcing platform designed to collect Arabic speech to enhance dialectal speech technologies. This platform offers an opportunity to design large dialectal speech datasets; and makes them publicly available. MyVoice allows contributors to select city/country-level fine-grained dialect and record the displayed utterances. Users can switch roles between contributors and annotators. The platform incorporates a quality assurance system that filters out low-quality and spurious recordings before sending them for validation. During the validation phase, contributors can assess the quality of recordings, annotate them, and provide feedback which is then reviewed by administrators. Furthermore, the platform offers flexibility to admin roles to add new data or tasks beyond dialectal speech and word collection, which are displayed to contributors. Thus, enabling collaborative efforts in gathering diverse and large Arabic speech data.
Improving Speech Enhancement with Multi-Metric Supervision from Learned Quality Assessment
Speech quality assessment (SQA) aims to predict the perceived quality of speech signals under a wide range of distortions. It is inherently connected to speech enhancement (SE), which seeks to improve speech quality by removing unwanted signal components. While SQA models are widely used to evaluate SE performance, their potential to guide SE training remains underexplored. In this work, we investigate a training framework that leverages a SQA model, trained to predict multiple evaluation metrics from a public SE leaderboard, as a supervisory signal for SE. This approach addresses a key limitation of conventional SE objectives, such as SI-SNR, which often fail to align with perceptual quality and generalize poorly across evaluation metrics. Moreover, it enables training on real-world data where clean references are unavailable. Experiments on both simulated and real-world test sets show that SQA-guided training consistently improves performance across a range of quality metrics. Code and checkpoints are available at https://github.com/urgent-challenge/urgent2026_challenge_track2
Accent Conversion in Text-To-Speech Using Multi-Level VAE and Adversarial Training
With rapid globalization, the need to build inclusive and representative speech technology cannot be overstated. Accent is an important aspect of speech that needs to be taken into consideration while building inclusive speech synthesizers. Inclusive speech technology aims to erase any biases towards specific groups, such as people of certain accent. We note that state-of-the-art Text-to-Speech (TTS) systems may currently not be suitable for all people, regardless of their background, as they are designed to generate high-quality voices without focusing on accent. In this paper, we propose a TTS model that utilizes a Multi-Level Variational Autoencoder with adversarial learning to address accented speech synthesis and conversion in TTS, with a vision for more inclusive systems in the future. We evaluate the performance through both objective metrics and subjective listening tests. The results show an improvement in accent conversion ability compared to the baseline.
Automated Generation of Multiple-Choice Cloze Questions for Assessing English Vocabulary Using GPT-turbo 3.5
A common way of assessing language learners' mastery of vocabulary is via multiple-choice cloze (i.e., fill-in-the-blank) questions. But the creation of test items can be laborious for individual teachers or in large-scale language programs. In this paper, we evaluate a new method for automatically generating these types of questions using large language models (LLM). The VocaTT (vocabulary teaching and training) engine is written in Python and comprises three basic steps: pre-processing target word lists, generating sentences and candidate word options using GPT, and finally selecting suitable word options. To test the efficiency of this system, 60 questions were generated targeting academic words. The generated items were reviewed by expert reviewers who judged the well-formedness of the sentences and word options, adding comments to items judged not well-formed. Results showed a 75% rate of well-formedness for sentences and 66.85% rate for suitable word options. This is a marked improvement over the generator used earlier in our research which did not take advantage of GPT's capabilities. Post-hoc qualitative analysis reveals several points for improvement in future work including cross-referencing part-of-speech tagging, better sentence validation, and improving GPT prompts.
S2S-Arena, Evaluating Speech2Speech Protocols on Instruction Following with Paralinguistic Information
The rapid development of large language models (LLMs) has brought significant attention to speech models, particularly recent progress in speech2speech protocols supporting speech input and output. However, the existing benchmarks adopt automatic text-based evaluators for evaluating the instruction following ability of these models lack consideration for paralinguistic information in both speech understanding and generation. To address these issues, we introduce S2S-Arena, a novel arena-style S2S benchmark that evaluates instruction-following capabilities with paralinguistic information in both speech-in and speech-out across real-world tasks. We design 154 samples that fused TTS and live recordings in four domains with 21 tasks and manually evaluate existing popular speech models in an arena-style manner. The experimental results show that: (1) in addition to the superior performance of GPT-4o, the speech model of cascaded ASR, LLM, and TTS outperforms the jointly trained model after text-speech alignment in speech2speech protocols; (2) considering paralinguistic information, the knowledgeability of the speech model mainly depends on the LLM backbone, and the multilingual support of that is limited by the speech module; (3) excellent speech models can already understand the paralinguistic information in speech input, but generating appropriate audio with paralinguistic information is still a challenge.
To Distill or Not to Distill? On the Robustness of Robust Knowledge Distillation
Arabic is known to present unique challenges for Automatic Speech Recognition (ASR). On one hand, its rich linguistic diversity and wide range of dialects complicate the development of robust, inclusive models. On the other, current multilingual ASR models are compute-intensive and lack proper comprehensive evaluations. In light of these challenges, we distill knowledge from large teacher models into smaller student variants that are more efficient. We also introduce a novel human-annotated dataset covering five under-represented Arabic dialects for evaluation. We further evaluate both our models and existing SoTA multilingual models on both standard available benchmarks and our new dialectal data. Our best-distilled model's overall performance (45.0\% WER) surpasses that of a SoTA model twice its size (SeamlessM4T-large-v2, WER=47.0\%) and its teacher model (Whisper-large-v2, WER=55.1\%), and its average performance on our new dialectal data (56.9\% WER) outperforms all other models. To gain more insight into the poor performance of these models on dialectal data, we conduct an error analysis and report the main types of errors the different models tend to make. The GitHub repository for the project is available at https://github.com/UBC-NLP/distill-whisper-ar.
GigaSpeech: An Evolving, Multi-domain ASR Corpus with 10,000 Hours of Transcribed Audio
This paper introduces GigaSpeech, an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science, sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable for speech recognition training, and to filter out segments with low-quality transcription. For system training, GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h. For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage, and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand, are re-processed by professional human transcribers to ensure high transcription quality. Baseline systems are provided for popular speech recognition toolkits, namely Athena, ESPnet, Kaldi and Pika.
Boosting Norwegian Automatic Speech Recognition
In this paper, we present several baselines for automatic speech recognition (ASR) models for the two official written languages in Norway: Bokm{\aa}l and Nynorsk. We compare the performance of models of varying sizes and pre-training approaches on multiple Norwegian speech datasets. Additionally, we measure the performance of these models against previous state-of-the-art ASR models, as well as on out-of-domain datasets. We improve the state of the art on the Norwegian Parliamentary Speech Corpus (NPSC) from a word error rate (WER) of 17.10\% to 7.60\%, with models achieving 5.81\% for Bokm{\aa}l and 11.54\% for Nynorsk. We also discuss the challenges and potential solutions for further improving ASR models for Norwegian.
AfriSpeech-200: Pan-African Accented Speech Dataset for Clinical and General Domain ASR
Africa has a very low doctor-to-patient ratio. At very busy clinics, doctors could see 30+ patients per day -- a heavy patient burden compared with developed countries -- but productivity tools such as clinical automatic speech recognition (ASR) are lacking for these overworked clinicians. However, clinical ASR is mature, even ubiquitous, in developed nations, and clinician-reported performance of commercial clinical ASR systems is generally satisfactory. Furthermore, the recent performance of general domain ASR is approaching human accuracy. However, several gaps exist. Several publications have highlighted racial bias with speech-to-text algorithms and performance on minority accents lags significantly. To our knowledge, there is no publicly available research or benchmark on accented African clinical ASR, and speech data is non-existent for the majority of African accents. We release AfriSpeech, 200hrs of Pan-African English speech, 67,577 clips from 2,463 unique speakers across 120 indigenous accents from 13 countries for clinical and general domain ASR, a benchmark test set, with publicly available pre-trained models with SOTA performance on the AfriSpeech benchmark.
Benchmarking Foundation Models with Language-Model-as-an-Examiner
Numerous benchmarks have been established to assess the performance of foundation models on open-ended question answering, which serves as a comprehensive test of a model's ability to understand and generate language in a manner similar to humans. Most of these works focus on proposing new datasets, however, we see two main issues within previous benchmarking pipelines, namely testing leakage and evaluation automation. In this paper, we propose a novel benchmarking framework, Language-Model-as-an-Examiner, where the LM serves as a knowledgeable examiner that formulates questions based on its knowledge and evaluates responses in a reference-free manner. Our framework allows for effortless extensibility as various LMs can be adopted as the examiner, and the questions can be constantly updated given more diverse trigger topics. For a more comprehensive and equitable evaluation, we devise three strategies: (1) We instruct the LM examiner to generate questions across a multitude of domains to probe for a broad acquisition, and raise follow-up questions to engage in a more in-depth assessment. (2) Upon evaluation, the examiner combines both scoring and ranking measurements, providing a reliable result as it aligns closely with human annotations. (3) We additionally propose a decentralized Peer-examination method to address the biases in a single examiner. Our data and benchmarking results are available at: https://lmexam.com.
Voxlect: A Speech Foundation Model Benchmark for Modeling Dialects and Regional Languages Around the Globe
We present Voxlect, a novel benchmark for modeling dialects and regional languages worldwide using speech foundation models. Specifically, we report comprehensive benchmark evaluations on dialects and regional language varieties in English, Arabic, Mandarin and Cantonese, Tibetan, Indic languages, Thai, Spanish, French, German, Brazilian Portuguese, and Italian. Our study used over 2 million training utterances from 30 publicly available speech corpora that are provided with dialectal information. We evaluate the performance of several widely used speech foundation models in classifying speech dialects. We assess the robustness of the dialectal models under noisy conditions and present an error analysis that highlights modeling results aligned with geographic continuity. In addition to benchmarking dialect classification, we demonstrate several downstream applications enabled by Voxlect. Specifically, we show that Voxlect can be applied to augment existing speech recognition datasets with dialect information, enabling a more detailed analysis of ASR performance across dialectal variations. Voxlect is also used as a tool to evaluate the performance of speech generation systems. Voxlect is publicly available with the license of the RAIL family at: https://github.com/tiantiaf0627/voxlect.
A Deep Dive into the Disparity of Word Error Rates Across Thousands of NPTEL MOOC Videos
Automatic speech recognition (ASR) systems are designed to transcribe spoken language into written text and find utility in a variety of applications including voice assistants and transcription services. However, it has been observed that state-of-the-art ASR systems which deliver impressive benchmark results, struggle with speakers of certain regions or demographics due to variation in their speech properties. In this work, we describe the curation of a massive speech dataset of 8740 hours consisting of sim9.8K technical lectures in the English language along with their transcripts delivered by instructors representing various parts of Indian demography. The dataset is sourced from the very popular NPTEL MOOC platform. We use the curated dataset to measure the existing disparity in YouTube Automatic Captions and OpenAI Whisper model performance across the diverse demographic traits of speakers in India. While there exists disparity due to gender, native region, age and speech rate of speakers, disparity based on caste is non-existent. We also observe statistically significant disparity across the disciplines of the lectures. These results indicate the need of more inclusive and robust ASR systems and more representational datasets for disparity evaluation in them.
Evaluating Dialect Robustness of Language Models via Conversation Understanding
With an evergrowing number of LLMs reporting superlative performance for English, their ability to perform equitably for different dialects of English (i.e., dialect robustness) needs to be ascertained. Specifically, we use English language (US English or Indian English) conversations between humans who play the word-guessing game of `taboo'. We formulate two evaluative tasks: target word prediction (TWP) (i.e.predict the masked target word in a conversation) and target word selection (TWS) (i.e., select the most likely masked target word in a conversation, from among a set of candidate words). Extending MD3, an existing dialectic dataset of taboo-playing conversations, we introduce M-MD3, a target-word-masked version of MD3 with the USEng and IndEng subsets. We add two subsets: AITrans (where dialectic information is removed from IndEng) and AIGen (where LLMs are prompted to generate conversations). Our evaluation uses pre-trained and fine-tuned versions of two closed-source (GPT-4/3.5) and two open-source LLMs (Mistral and Gemma). LLMs perform significantly better for US English than Indian English for both TWP and TWS, for all settings. While GPT-based models perform the best, the comparatively smaller models work more equitably for short conversations (<8 turns). Our results on AIGen and AITrans (the best and worst-performing subset) respectively show that LLMs may learn a dialect of their own based on the composition of the training data, and that dialect robustness is indeed a challenging task. Our evaluation methodology exhibits a novel way to examine attributes of language models using pre-existing dialogue datasets.
Language Models Prefer What They Know: Relative Confidence Estimation via Confidence Preferences
Language models (LMs) should provide reliable confidence estimates to help users detect mistakes in their outputs and defer to human experts when necessary. Asking a language model to assess its confidence ("Score your confidence from 0-1.") is a natural way of evaluating its uncertainty. However, models struggle to provide absolute assessments of confidence (i.e. judging confidence in answering a question independent of other questions) and the coarse-grained scores they produce are not useful for evaluating the correctness of their answers. We propose relative confidence estimation, where we match up questions against each other and ask the model to make relative judgments of confidence ("Which question are you more confident in answering correctly?"). Treating each question as a "player" in a series of matchups against other questions and the model's preferences as match outcomes, we can use rank aggregation methods like Elo rating and Bradley-Terry to translate the model's confidence preferences into confidence scores. We evaluate relative confidence estimation against absolute confidence estimation and self-consistency confidence methods on five state-of-the-art LMs -- GPT-4, GPT-4o, Gemini 1.5 Pro, Claude 3.5 Sonnet, and Llama 3.1 405B -- across 14 challenging STEM, social science, and commonsense reasoning question answering tasks. Our results demonstrate that relative confidence estimation consistently provides more reliable confidence scores than absolute confidence estimation, with average gains of 3.5% in selective classification AUC over direct absolute confidence estimation methods and 1.7% over self-consistency approaches across all models and datasets.
CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages
We describe our development of CSS10, a collection of single speaker speech datasets for ten languages. It is composed of short audio clips from LibriVox audiobooks and their aligned texts. To validate its quality we train two neural text-to-speech models on each dataset. Subsequently, we conduct Mean Opinion Score tests on the synthesized speech samples. We make our datasets, pre-trained models, and test resources publicly available. We hope they will be used for future speech tasks.
Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency
For a large portion of real-life utterances, the intention cannot be solely decided by either their semantic or syntactic characteristics. Although not all the sociolinguistic and pragmatic information can be digitized, at least phonetic features are indispensable in understanding the spoken language. Especially in head-final languages such as Korean, sentence-final prosody has great importance in identifying the speaker's intention. This paper suggests a system which identifies the inherent intention of a spoken utterance given its transcript, in some cases using auxiliary acoustic features. The main point here is a separate distinction for cases where discrimination of intention requires an acoustic cue. Thus, the proposed classification system decides whether the given utterance is a fragment, statement, question, command, or a rhetorical question/command, utilizing the intonation-dependency coming from the head-finality. Based on an intuitive understanding of the Korean language that is engaged in the data annotation, we construct a network which identifies the intention of a speech, and validate its utility with the test sentences. The system, if combined with up-to-date speech recognizers, is expected to be flexibly inserted into various language understanding modules.
Pitch-Aware RNN-T for Mandarin Chinese Mispronunciation Detection and Diagnosis
Mispronunciation Detection and Diagnosis (MDD) systems, leveraging Automatic Speech Recognition (ASR), face two main challenges in Mandarin Chinese: 1) The two-stage models create an information gap between the phoneme or tone classification stage and the MDD stage. 2) The scarcity of Mandarin MDD datasets limits model training. In this paper, we introduce a stateless RNN-T model for Mandarin MDD, utilizing HuBERT features with pitch embedding through a Pitch Fusion Block. Our model, trained solely on native speaker data, shows a 3% improvement in Phone Error Rate and a 7% increase in False Acceptance Rate over the state-of-the-art baseline in non-native scenarios
Whisper Turns Stronger: Augmenting Wav2Vec 2.0 for Superior ASR in Low-Resource Languages
Approaching Speech-to-Text and Automatic Speech Recognition problems in low-resource languages is notoriously challenging due to the scarcity of validated datasets and the diversity of dialects. Arabic, Russian, and Portuguese exemplify these difficulties, being low-resource languages due to the many dialects of these languages across different continents worldwide. Moreover, the variety of accents and pronunciations of such languages complicate ASR models' success. With the increasing popularity of Deep Learning and Transformers, acoustic models like the renowned Wav2Vec2 have achieved superior performance in the Speech Recognition field compared to state-of-the-art approaches. However, despite Wav2Vec2's improved efficiency over traditional methods, its performance significantly declines for under-represented languages, even though it requires significantly less labeled data. This paper introduces an end-to-end framework that enhances ASR systems fine-tuned on Wav2Vec2 through data augmentation techniques. To validate our framework's effectiveness, we conducted a detailed experimental evaluation using three datasets from Mozilla's Common Voice project in Arabic, Russian, and Portuguese. Additionally, the framework presented in this paper demonstrates robustness to different diacritics. Ultimately, our approach outperforms two previous baseline models, which are the pre-trained Wav2Vec2 and the well-known Whisper ASR model, resulting in an average relative improvement of 33.9\% in Word Error Rate and a 53.2\% relative improvement in Character Error Rate.
SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words
Speech encompasses a wealth of information, including but not limited to content, paralinguistic, and environmental information. This comprehensive nature of speech significantly impacts communication and is crucial for human-computer interaction. Chat-Oriented Large Language Models (LLMs), known for their general-purpose assistance capabilities, have evolved to handle multi-modal inputs, including speech. Although these models can be adept at recognizing and analyzing speech, they often fall short of generating appropriate responses. We argue that this is due to the lack of principles on task definition and model development, which requires open-source datasets and metrics suitable for model evaluation. To bridge the gap, we present SD-Eval, a benchmark dataset aimed at multidimensional evaluation of spoken dialogue understanding and generation. SD-Eval focuses on paralinguistic and environmental information and includes 7,303 utterances, amounting to 8.76 hours of speech data. The data is aggregated from eight public datasets, representing four perspectives: emotion, accent, age, and background sound. To assess the SD-Eval benchmark dataset, we implement three different models and construct a training set following a similar process as SD-Eval. The training set contains 1,052.72 hours of speech data and 724.4k utterances. We also conduct a comprehensive evaluation using objective evaluation methods (e.g. BLEU and ROUGE), subjective evaluations and LLM-based metrics for the generated responses. Models conditioned with paralinguistic and environmental information outperform their counterparts in both objective and subjective measures. Moreover, experiments demonstrate LLM-based metrics show a higher correlation with human evaluation compared to traditional metrics. We open-source SD-Eval at https://github.com/amphionspace/SD-Eval.
Rethinking Generative Large Language Model Evaluation for Semantic Comprehension
Despite their sophisticated capabilities, large language models (LLMs) encounter a major hurdle in effective assessment. This paper first revisits the prevalent evaluation method-multiple choice question answering (MCQA), which allows for straightforward accuracy measurement. Through a comprehensive evaluation of 24 models across 11 benchmarks, we highlight several potential drawbacks of MCQA, for instance, the inconsistency between the MCQA evaluation and the generation of open-ended responses in practical scenarios. In response, we introduce an RWQ-Elo rating system, engaging 24 LLMs such as GPT-4, GPT-3.5, Google-Gemini-Pro and LLaMA-1/-2, in a two-player competitive format, with GPT-4 serving as the judge. Each LLM receives an Elo rating thereafter. This system is designed to mirror real-world usage, and for this purpose, we have compiled a new benchmark called ``Real-world questions'' (RWQ), comprising 20,772 authentic user inquiries. Additionally, we thoroughly analyze the characteristics of our system and compare it with prior leaderboards like AlpacaEval and MT-Bench. Our analysis reveals the stability of our RWQ-Elo system, the feasibility of registering new models, and its potential to reshape LLM leaderboards.
UtterTune: LoRA-Based Target-Language Pronunciation Edit and Control in Multilingual Text-to-Speech
We propose UtterTune, a lightweight adaptation method that fine-tunes a multilingual text-to-speech (TTS) system based on a large language model (LLM) architecture, designed to enhance the controllability of pronunciation in a target language while preserving performance in others. While LLM architectures have enabled TTS models to achieve remarkable naturalness, accurately modeling grapheme-to-phoneme (G2P) mapping and prosody remains challenging, especially when the model omits an explicit G2P module and directly processes minimally encoded text (e.g., byte-pair encoding). UtterTune leverages low-rank adaptation to enable the control of segmental pronunciation and pitch accent at the phoneme level for Japanese speech, the target language in this paper, while maintaining naturalness and speaker similarity in a zero-shot setting. Objective and subjective evaluations confirm its effectiveness.
Tails Tell Tales: Chapter-Wide Manga Transcriptions with Character Names
Enabling engagement of manga by visually impaired individuals presents a significant challenge due to its inherently visual nature. With the goal of fostering accessibility, this paper aims to generate a dialogue transcript of a complete manga chapter, entirely automatically, with a particular emphasis on ensuring narrative consistency. This entails identifying (i) what is being said, i.e., detecting the texts on each page and classifying them into essential vs non-essential, and (ii) who is saying it, i.e., attributing each dialogue to its speaker, while ensuring the same characters are named consistently throughout the chapter. To this end, we introduce: (i) Magiv2, a model that is capable of generating high-quality chapter-wide manga transcripts with named characters and significantly higher precision in speaker diarisation over prior works; (ii) an extension of the PopManga evaluation dataset, which now includes annotations for speech-bubble tail boxes, associations of text to corresponding tails, classifications of text as essential or non-essential, and the identity for each character box; and (iii) a new character bank dataset, which comprises over 11K characters from 76 manga series, featuring 11.5K exemplar character images in total, as well as a list of chapters in which they appear. The code, trained model, and both datasets can be found at: https://github.com/ragavsachdeva/magi
TTSDS -- Text-to-Speech Distribution Score
Many recently published Text-to-Speech (TTS) systems produce audio close to real speech. However, TTS evaluation needs to be revisited to make sense of the results obtained with the new architectures, approaches and datasets. We propose evaluating the quality of synthetic speech as a combination of multiple factors such as prosody, speaker identity, and intelligibility. Our approach assesses how well synthetic speech mirrors real speech by obtaining correlates of each factor and measuring their distance from both real speech datasets and noise datasets. We benchmark 35 TTS systems developed between 2008 and 2024 and show that our score computed as an unweighted average of factors strongly correlates with the human evaluations from each time period.
FT Speech: Danish Parliament Speech Corpus
This paper introduces FT Speech, a new speech corpus created from the recorded meetings of the Danish Parliament, otherwise known as the Folketing (FT). The corpus contains over 1,800 hours of transcribed speech by a total of 434 speakers. It is significantly larger in duration, vocabulary, and amount of spontaneous speech than the existing public speech corpora for Danish, which are largely limited to read-aloud and dictation data. We outline design considerations, including the preprocessing methods and the alignment procedure. To evaluate the quality of the corpus, we train automatic speech recognition systems on the new resource and compare them to the systems trained on the Danish part of Sprakbanken, the largest public ASR corpus for Danish to date. Our baseline results show that we achieve a 14.01 WER on the new corpus. A combination of FT Speech with in-domain language data provides comparable results to models trained specifically on Sprakbanken, showing that FT Speech transfers well to this data set. Interestingly, our results demonstrate that the opposite is not the case. This shows that FT Speech provides a valuable resource for promoting research on Danish ASR with more spontaneous speech.
Reliable and Efficient Amortized Model-based Evaluation
Comprehensive evaluations of language models (LM) during both development and deployment phases are necessary because these models possess numerous capabilities (e.g., mathematical reasoning, legal support, or medical diagnostic) as well as safety risks (e.g., racial bias, toxicity, or misinformation). The average score across a wide range of benchmarks provides a signal that helps guide the use of these LMs in practice. Currently, holistic evaluations are costly due to the large volume of benchmark questions, making frequent evaluations impractical. A popular attempt to lower the cost is to compute the average score on a subset of the benchmark. This approach, unfortunately, often renders an unreliable measure of LM performance because the average score is often confounded with the difficulty of the questions in the benchmark subset. Item response theory (IRT) was designed to address this challenge, providing a reliable measurement by careful controlling for question difficulty. Unfortunately, question difficulty is expensive to estimate. Facing this challenge, we train a model that predicts question difficulty from its content, enabling a reliable measurement at a fraction of the cost. In addition, we leverage this difficulty predictor to further improve the evaluation efficiency through training a question generator given a difficulty level. This question generator is essential in adaptive testing, where, instead of using a random subset of the benchmark questions, informative questions are adaptively chosen based on the current estimation of LLM performance. Experiments on 22 common natural language benchmarks and 172 LMs show that this approach is more reliable and efficient compared to current common practice.
Does Context Matter? ContextualJudgeBench for Evaluating LLM-based Judges in Contextual Settings
The large language model (LLM)-as-judge paradigm has been used to meet the demand for a cheap, reliable, and fast evaluation of model outputs during AI system development and post-deployment monitoring. While judge models -- LLMs finetuned to specialize in assessing and critiquing model outputs -- have been touted as general purpose evaluators, they are typically evaluated only on non-contextual scenarios, such as instruction following. The omission of contextual settings -- those where external information is used as context to generate an output -- is surprising given the increasing prevalence of retrieval-augmented generation (RAG) and summarization use cases. Contextual assessment is uniquely challenging, as evaluation often depends on practitioner priorities, leading to conditional evaluation criteria (e.g., comparing responses based on factuality and then considering completeness if they are equally factual). To address the gap, we propose ContextualJudgeBench, a judge benchmark with 2,000 challenging response pairs across eight splits inspired by real-world contextual evaluation scenarios. We build our benchmark with a multi-pronged data construction pipeline that leverages both existing human annotations and model-based perturbations. Our comprehensive study across 11 judge models and 9 general purpose models, reveals that the contextual information and its assessment criteria present a significant challenge to even state-of-the-art models. For example, OpenAI's o1, the best-performing model, barely reaches 55% consistent accuracy.
SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
Multi-VALUE: A Framework for Cross-Dialectal English NLP
Dialect differences caused by regional, social, and economic factors cause performance discrepancies for many groups of language technology users. Inclusive and equitable language technology must critically be dialect invariant, meaning that performance remains constant over dialectal shifts. Current systems often fall short of this ideal since they are designed and tested on a single dialect: Standard American English (SAE). We introduce a suite of resources for evaluating and achieving English dialect invariance. The resource is called Multi-VALUE, a controllable rule-based translation system spanning 50 English dialects and 189 unique linguistic features. Multi-VALUE maps SAE to synthetic forms of each dialect. First, we use this system to stress tests question answering, machine translation, and semantic parsing. Stress tests reveal significant performance disparities for leading models on non-standard dialects. Second, we use this system as a data augmentation technique to improve the dialect robustness of existing systems. Finally, we partner with native speakers of Chicano and Indian English to release new gold-standard variants of the popular CoQA task. To execute the transformation code, run model checkpoints, and download both synthetic and gold-standard dialectal benchmark datasets, see http://value-nlp.org.
A Survey on Non-Intrusive ASR Refinement: From Output-Level Correction to Full-Model Distillation
Automatic Speech Recognition (ASR) has become an integral component of modern technology, powering applications such as voice-activated assistants, transcription services, and accessibility tools. Yet ASR systems continue to struggle with the inherent variability of human speech, such as accents, dialects, and speaking styles, as well as environmental interference, including background noise. Moreover, domain-specific conversations often employ specialized terminology, which can exacerbate transcription errors. These shortcomings not only degrade raw ASR accuracy but also propagate mistakes through subsequent natural language processing pipelines. Because redesigning an ASR model is costly and time-consuming, non-intrusive refinement techniques that leave the model's architecture unchanged have become increasingly popular. In this survey, we systematically review current non-intrusive refinement approaches and group them into five classes: fusion, re-scoring, correction, distillation, and training adjustment. For each class, we outline the main methods, advantages, drawbacks, and ideal application scenarios. Beyond method classification, this work surveys adaptation techniques aimed at refining ASR in domain-specific contexts, reviews commonly used evaluation datasets along with their construction processes, and proposes a standardized set of metrics to facilitate fair comparisons. Finally, we identify open research gaps and suggest promising directions for future work. By providing this structured overview, we aim to equip researchers and practitioners with a clear foundation for developing more robust, accurate ASR refinement pipelines.
Exploring Generative Error Correction for Dysarthric Speech Recognition
Despite the remarkable progress in end-to-end Automatic Speech Recognition (ASR) engines, accurately transcribing dysarthric speech remains a major challenge. In this work, we proposed a two-stage framework for the Speech Accessibility Project Challenge at INTERSPEECH 2025, which combines cutting-edge speech recognition models with LLM-based generative error correction (GER). We assess different configurations of model scales and training strategies, incorporating specific hypothesis selection to improve transcription accuracy. Experiments on the Speech Accessibility Project dataset demonstrate the strength of our approach on structured and spontaneous speech, while highlighting challenges in single-word recognition. Through comprehensive analysis, we provide insights into the complementary roles of acoustic and linguistic modeling in dysarthric speech recognition
LibriSpeech-PC: Benchmark for Evaluation of Punctuation and Capitalization Capabilities of end-to-end ASR Models
Traditional automatic speech recognition (ASR) models output lower-cased words without punctuation marks, which reduces readability and necessitates a subsequent text processing model to convert ASR transcripts into a proper format. Simultaneously, the development of end-to-end ASR models capable of predicting punctuation and capitalization presents several challenges, primarily due to limited data availability and shortcomings in the existing evaluation methods, such as inadequate assessment of punctuation prediction. In this paper, we introduce a LibriSpeech-PC benchmark designed to assess the punctuation and capitalization prediction capabilities of end-to-end ASR models. The benchmark includes a LibriSpeech-PC dataset with restored punctuation and capitalization, a novel evaluation metric called Punctuation Error Rate (PER) that focuses on punctuation marks, and initial baseline models. All code, data, and models are publicly available.
USC: An Open-Source Uzbek Speech Corpus and Initial Speech Recognition Experiments
We present a freely available speech corpus for the Uzbek language and report preliminary automatic speech recognition (ASR) results using both the deep neural network hidden Markov model (DNN-HMM) and end-to-end (E2E) architectures. The Uzbek speech corpus (USC) comprises 958 different speakers with a total of 105 hours of transcribed audio recordings. To the best of our knowledge, this is the first open-source Uzbek speech corpus dedicated to the ASR task. To ensure high quality, the USC has been manually checked by native speakers. We first describe the design and development procedures of the USC, and then explain the conducted ASR experiments in detail. The experimental results demonstrate promising results for the applicability of the USC for ASR. Specifically, 18.1% and 17.4% word error rates were achieved on the validation and test sets, respectively. To enable experiment reproducibility, we share the USC dataset, pre-trained models, and training recipes in our GitHub repository.
The Third DIHARD Diarization Challenge
DIHARD III was the third in a series of speaker diarization challenges intended to improve the robustness of diarization systems to variability in recording equipment, noise conditions, and conversational domain. Speaker diarization was evaluated under two speech activity conditions (diarization from a reference speech activity vs. diarization from scratch) and 11 diverse domains. The domains span a range of recording conditions and interaction types, including read audio-books, meeting speech, clinical interviews, web videos, and, for the first time, conversational telephone speech. A total of 30 organizations (forming 21teams) from industry and academia submitted 499 valid system outputs. The evaluation results indicate that speaker diarization has improved markedly since DIHARD I, particularly for two-party interactions, but that for many domains (e.g., web video) the problem remains far from solved.
Solla: Towards a Speech-Oriented LLM That Hears Acoustic Context
Large Language Models (LLMs) have recently shown remarkable ability to process not only text but also multimodal inputs such as speech and audio. However, most existing models primarily focus on analyzing input signals using text instructions, overlooking scenarios in which speech instructions and audio are mixed and serve as inputs to the model. To address these challenges, we introduce Solla, a novel framework designed to understand speech-based questions and hear the acoustic context concurrently. Solla incorporates an audio tagging module to effectively identify and represent audio events, as well as an ASR-assisted prediction method to improve comprehension of spoken content. To rigorously evaluate Solla and other publicly available models, we propose a new benchmark dataset called SA-Eval, which includes three tasks: audio event classification, audio captioning, and audio question answering. SA-Eval has diverse speech instruction with various speaking styles, encompassing two difficulty levels, easy and hard, to capture the range of real-world acoustic conditions. Experimental results show that Solla performs on par with or outperforms baseline models on both the easy and hard test sets, underscoring its effectiveness in jointly understanding speech and audio.
Interaction Matters: An Evaluation Framework for Interactive Dialogue Assessment on English Second Language Conversations
We present an evaluation framework for interactive dialogue assessment in the context of English as a Second Language (ESL) speakers. Our framework collects dialogue-level interactivity labels (e.g., topic management; 4 labels in total) and micro-level span features (e.g., backchannels; 17 features in total). Given our annotated data, we study how the micro-level features influence the (higher level) interactivity quality of ESL dialogues by constructing various machine learning-based models. Our results demonstrate that certain micro-level features strongly correlate with interactivity quality, like reference word (e.g., she, her, he), revealing new insights about the interaction between higher-level dialogue quality and lower-level linguistic signals. Our framework also provides a means to assess ESL communication, which is useful for language assessment.
Reduce, Reuse, Recycle: Is Perturbed Data better than Other Language augmentation for Low Resource Self-Supervised Speech Models
Self-supervised representation learning (SSRL) has demonstrated superior performance than supervised models for tasks including phoneme recognition. Training SSRL models poses a challenge for low-resource languages where sufficient pre-training data may not be available. A common approach is cross-lingual pre-training. Instead, we propose to use audio augmentation techniques, namely: pitch variation, noise addition, accented target language and other language speech to pre-train SSRL models in a low resource condition and evaluate phoneme recognition. Our comparisons found that a combined synthetic augmentations (noise/pitch) strategy outperformed accent and language knowledge transfer. Furthermore, we examined the scaling factor of augmented data to achieve equivalent performance to model pre-trained with target domain speech. Our findings suggest that for resource-constrained languages, combined augmentations can be a viable option than other augmentations.
Common Phone: A Multilingual Dataset for Robust Acoustic Modelling
Current state of the art acoustic models can easily comprise more than 100 million parameters. This growing complexity demands larger training datasets to maintain a decent generalization of the final decision function. An ideal dataset is not necessarily large in size, but large with respect to the amount of unique speakers, utilized hardware and varying recording conditions. This enables a machine learning model to explore as much of the domain-specific input space as possible during parameter estimation. This work introduces Common Phone, a gender-balanced, multilingual corpus recorded from more than 11.000 contributors via Mozilla's Common Voice project. It comprises around 116 hours of speech enriched with automatically generated phonetic segmentation. A Wav2Vec 2.0 acoustic model was trained with the Common Phone to perform phonetic symbol recognition and validate the quality of the generated phonetic annotation. The architecture achieved a PER of 18.1 % on the entire test set, computed with all 101 unique phonetic symbols, showing slight differences between the individual languages. We conclude that Common Phone provides sufficient variability and reliable phonetic annotation to help bridging the gap between research and application of acoustic models.
SLUE: New Benchmark Tasks for Spoken Language Understanding Evaluation on Natural Speech
Progress in speech processing has been facilitated by shared datasets and benchmarks. Historically these have focused on automatic speech recognition (ASR), speaker identification, or other lower-level tasks. Interest has been growing in higher-level spoken language understanding tasks, including using end-to-end models, but there are fewer annotated datasets for such tasks. At the same time, recent work shows the possibility of pre-training generic representations and then fine-tuning for several tasks using relatively little labeled data. We propose to create a suite of benchmark tasks for Spoken Language Understanding Evaluation (SLUE) consisting of limited-size labeled training sets and corresponding evaluation sets. This resource would allow the research community to track progress, evaluate pre-trained representations for higher-level tasks, and study open questions such as the utility of pipeline versus end-to-end approaches. We present the first phase of the SLUE benchmark suite, consisting of named entity recognition, sentiment analysis, and ASR on the corresponding datasets. We focus on naturally produced (not read or synthesized) speech, and freely available datasets. We provide new transcriptions and annotations on subsets of the VoxCeleb and VoxPopuli datasets, evaluation metrics and results for baseline models, and an open-source toolkit to reproduce the baselines and evaluate new models.
A systematic comparison of grapheme-based vs. phoneme-based label units for encoder-decoder-attention models
Following the rationale of end-to-end modeling, CTC, RNN-T or encoder-decoder-attention models for automatic speech recognition (ASR) use graphemes or grapheme-based subword units based on e.g. byte-pair encoding (BPE). The mapping from pronunciation to spelling is learned completely from data. In contrast to this, classical approaches to ASR employ secondary knowledge sources in the form of phoneme lists to define phonetic output labels and pronunciation lexica. In this work, we do a systematic comparison between grapheme- and phoneme-based output labels for an encoder-decoder-attention ASR model. We investigate the use of single phonemes as well as BPE-based phoneme groups as output labels of our model. To preserve a simplified and efficient decoder design, we also extend the phoneme set by auxiliary units to be able to distinguish homophones. Experiments performed on the Switchboard 300h and LibriSpeech benchmarks show that phoneme-based modeling is competitive to grapheme-based encoder-decoder-attention modeling.
AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension
Recently, instruction-following audio-language models have received broad attention for human-audio interaction. However, the absence of benchmarks capable of evaluating audio-centric interaction capabilities has impeded advancements in this field. Previous models primarily focus on assessing different fundamental tasks, such as Automatic Speech Recognition (ASR), and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs) domain and to provide guidance for future improvement. In this paper, we introduce AIR-Bench (Audio InstRuction Benchmark), the first benchmark designed to evaluate the ability of LALMs to understand various types of audio signals (including human speech, natural sounds, and music), and furthermore, to interact with humans in the textual format. AIR-Bench encompasses two dimensions: foundation and chat benchmarks. The former consists of 19 tasks with approximately 19k single-choice questions, intending to inspect the basic single-task ability of LALMs. The latter one contains 2k instances of open-ended question-and-answer data, directly assessing the comprehension of the model on complex audio and its capacity to follow instructions. Both benchmarks require the model to generate hypotheses directly. We design a unified framework that leverages advanced language models, such as GPT-4, to evaluate the scores of generated hypotheses given the meta-information of the audio. Experimental results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation. By revealing the limitations of existing LALMs through evaluation results, AIR-Bench can provide insights into the direction of future research.
Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages
Automatic Speech Recognition (ASR) has increasing utility in the modern world. There are a many ASR models available for languages with large amounts of training data like English. However, low-resource languages are poorly represented. In response we create and release an open-licensed and formatted dataset of audio recordings of the Bible in low-resource northern Indian languages. We setup multiple experimental splits and train and analyze two competitive ASR models to serve as the baseline for future research using this data.
SpokenNativQA: Multilingual Everyday Spoken Queries for LLMs
Large Language Models (LLMs) have demonstrated remarkable performance across various disciplines and tasks. However, benchmarking their capabilities with multilingual spoken queries remains largely unexplored. In this study, we introduce SpokenNativQA, the first multilingual and culturally aligned spoken question-answering (SQA) dataset designed to evaluate LLMs in real-world conversational settings. The dataset comprises approximately 33,000 naturally spoken questions and answers in multiple languages, including low-resource and dialect-rich languages, providing a robust benchmark for assessing LLM performance in speech-based interactions. SpokenNativQA addresses the limitations of text-based QA datasets by incorporating speech variability, accents, and linguistic diversity. We benchmark different ASR systems and LLMs for SQA and present our findings. We released the data at (https://huggingface.co/datasets/QCRI/SpokenNativQA) and the experimental scripts at (https://llmebench.qcri.org/) for the research community.
MMSU: A Massive Multi-task Spoken Language Understanding and Reasoning Benchmark
Speech inherently contains rich acoustic information that extends far beyond the textual language. In real-world spoken language understanding, effective interpretation often requires integrating semantic meaning (e.g., content), paralinguistic features (e.g., emotions, speed, pitch) and phonological characteristics (e.g., prosody, intonation, rhythm), which are embedded in speech. While recent multimodal Speech Large Language Models (SpeechLLMs) have demonstrated remarkable capabilities in processing audio information, their ability to perform fine-grained perception and complex reasoning in natural speech remains largely unexplored. To address this gap, we introduce MMSU, a comprehensive benchmark designed specifically for understanding and reasoning in spoken language. MMSU comprises 5,000 meticulously curated audio-question-answer triplets across 47 distinct tasks. To ground our benchmark in linguistic theory, we systematically incorporate a wide range of linguistic phenomena, including phonetics, prosody, rhetoric, syntactics, semantics, and paralinguistics. Through a rigorous evaluation of 14 advanced SpeechLLMs, we identify substantial room for improvement in existing models, highlighting meaningful directions for future optimization. MMSU establishes a new standard for comprehensive assessment of spoken language understanding, providing valuable insights for developing more sophisticated human-AI speech interaction systems. MMSU benchmark is available at https://huggingface.co/datasets/ddwang2000/MMSU. Evaluation Code is available at https://github.com/dingdongwang/MMSU_Bench.
When All Options Are Wrong: Evaluating Large Language Model Robustness with Incorrect Multiple-Choice Options
This paper examines the zero-shot ability of Large Language Models (LLMs) to detect multiple-choice questions with no correct answer, a crucial aspect of educational assessment quality. We explore this ability not only as a measure of subject matter knowledge but also as an indicator of critical thinking within LLMs. Our experiments, utilizing a range of LLMs on diverse questions, highlight the significant performance gap between questions with a single correct answer and those without. Llama-3.1-405B stands out by successfully identifying the lack of a valid answer in many instances. These findings suggest that LLMs should prioritize critical thinking over blind instruction following and caution against their use in educational settings where questions with incorrect answers might lead to inaccurate evaluations. This research sets a benchmark for assessing critical thinking in LLMs and emphasizes the need for ongoing model alignment to ensure genuine user comprehension and assistance.
PromptTTS 2: Describing and Generating Voices with Text Prompt
Speech conveys more information than just text, as the same word can be uttered in various voices to convey diverse information. Compared to traditional text-to-speech (TTS) methods relying on speech prompts (reference speech) for voice variability, using text prompts (descriptions) is more user-friendly since speech prompts can be hard to find or may not exist at all. TTS approaches based on the text prompt face two challenges: 1) the one-to-many problem, where not all details about voice variability can be described in the text prompt, and 2) the limited availability of text prompt datasets, where vendors and large cost of data labeling are required to write text prompt for speech. In this work, we introduce PromptTTS 2 to address these challenges with a variation network to provide variability information of voice not captured by text prompts, and a prompt generation pipeline to utilize the large language models (LLM) to compose high quality text prompts. Specifically, the variation network predicts the representation extracted from the reference speech (which contains full information about voice) based on the text prompt representation. For the prompt generation pipeline, it generates text prompts for speech with a speech understanding model to recognize voice attributes (e.g., gender, speed) from speech and a large language model to formulate text prompt based on the recognition results. Experiments on a large-scale (44K hours) speech dataset demonstrate that compared to the previous works, PromptTTS 2 generates voices more consistent with text prompts and supports the sampling of diverse voice variability, thereby offering users more choices on voice generation. Additionally, the prompt generation pipeline produces high-quality prompts, eliminating the large labeling cost. The demo page of PromptTTS 2 is available onlinehttps://speechresearch.github.io/prompttts2.
QASR: QCRI Aljazeera Speech Resource -- A Large Scale Annotated Arabic Speech Corpus
We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR contains linguistically motivated segmentation, punctuation, speaker information among others. QASR is suitable for training and evaluating speech recognition systems, acoustics- and/or linguistics- based Arabic dialect identification, punctuation restoration, speaker identification, speaker linking, and potentially other NLP modules for spoken data. In addition to QASR transcription, we release a dataset of 130M words to aid in designing and training a better language model. We show that end-to-end automatic speech recognition trained on QASR reports a competitive word error rate compared to the previous MGB-2 corpus. We report baseline results for downstream natural language processing tasks such as named entity recognition using speech transcript. We also report the first baseline for Arabic punctuation restoration. We make the corpus available for the research community.
Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits
We introduce Vox-Profile, a comprehensive benchmark to characterize rich speaker and speech traits using speech foundation models. Unlike existing works that focus on a single dimension of speaker traits, Vox-Profile provides holistic and multi-dimensional profiles that reflect both static speaker traits (e.g., age, sex, accent) and dynamic speech properties (e.g., emotion, speech flow). This benchmark is grounded in speech science and linguistics, developed with domain experts to accurately index speaker and speech characteristics. We report benchmark experiments using over 15 publicly available speech datasets and several widely used speech foundation models that target various static and dynamic speaker and speech properties. In addition to benchmark experiments, we showcase several downstream applications supported by Vox-Profile. First, we show that Vox-Profile can augment existing speech recognition datasets to analyze ASR performance variability. Vox-Profile is also used as a tool to evaluate the performance of speech generation systems. Finally, we assess the quality of our automated profiles through comparison with human evaluation and show convergent validity. Vox-Profile is publicly available at: https://github.com/tiantiaf0627/vox-profile-release.
Hearing voices at the National Library -- a speech corpus and acoustic model for the Swedish language
This paper explains our work in developing new acoustic models for automated speech recognition (ASR) at KBLab, the infrastructure for data-driven research at the National Library of Sweden (KB). We evaluate different approaches for a viable speech-to-text pipeline for audiovisual resources in Swedish, using the wav2vec 2.0 architecture in combination with speech corpuses created from KB's collections. These approaches include pretraining an acoustic model for Swedish from the ground up, and fine-tuning existing monolingual and multilingual models. The collections-based corpuses we use have been sampled from millions of hours of speech, with a conscious attempt to balance regional dialects to produce a more representative, and thus more democratic, model. The acoustic model this enabled, "VoxRex", outperforms existing models for Swedish ASR. We also evaluate combining this model with various pretrained language models, which further enhanced performance. We conclude by highlighting the potential of such technology for cultural heritage institutions with vast collections of previously unlabelled audiovisual data. Our models are released for further exploration and research here: https://huggingface.co/KBLab.
SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation
The lack of labeled second language (L2) speech data is a major challenge in designing mispronunciation detection models. We introduce SpeechBlender - a fine-grained data augmentation pipeline for generating mispronunciation errors to overcome such data scarcity. The SpeechBlender utilizes varieties of masks to target different regions of phonetic units, and use the mixing factors to linearly interpolate raw speech signals while augmenting pronunciation. The masks facilitate smooth blending of the signals, generating more effective samples than the `Cut/Paste' method. Our proposed technique achieves state-of-the-art results, with Speechocean762, on ASR dependent mispronunciation detection models at phoneme level, with a 2.0% gain in Pearson Correlation Coefficient (PCC) compared to the previous state-of-the-art [1]. Additionally, we demonstrate a 5.0% improvement at the phoneme level compared to our baseline. We also observed a 4.6% increase in F1-score with Arabic AraVoiceL2 testset.
My LLM might Mimic AAE -- But When Should it?
We examine the representation of African American English (AAE) in large language models (LLMs), exploring (a) the perceptions Black Americans have of how effective these technologies are at producing authentic AAE, and (b) in what contexts Black Americans find this desirable. Through both a survey of Black Americans (n= 104) and annotation of LLM-produced AAE by Black Americans (n= 228), we find that Black Americans favor choice and autonomy in determining when AAE is appropriate in LLM output. They tend to prefer that LLMs default to communicating in Mainstream U.S. English in formal settings, with greater interest in AAE production in less formal settings. When LLMs were appropriately prompted and provided in context examples, our participants found their outputs to have a level of AAE authenticity on par with transcripts of Black American speech. Select code and data for our project can be found here: https://github.com/smelliecat/AAEMime.git
Towards a Universal Method for Meaningful Signal Detection
It is known that human speech and certain animal vocalizations can convey meaningful content because we can decipher the content that a given utterance does convey. This paper explores an alternative approach to determining whether a signal is meaningful, one that analyzes only the signal itself and is independent of what the conveyed meaning might be. We devise a method that takes a waveform as input and outputs a score indicating its degree of `meaningfulness`. We cluster contiguous portions of the input to minimize the total description length, and then take the length of the code of the assigned cluster labels as meaningfulness score. We evaluate our method empirically, against several baselines, and show that it is the only one to give a high score to human speech in various languages and with various speakers, a moderate score to animal vocalizations from birds and orcas, and a low score to ambient noise from various sources.
MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement
The discrepancy between the cost function used for training a speech enhancement model and human auditory perception usually makes the quality of enhanced speech unsatisfactory. Objective evaluation metrics which consider human perception can hence serve as a bridge to reduce the gap. Our previously proposed MetricGAN was designed to optimize objective metrics by connecting the metric with a discriminator. Because only the scores of the target evaluation functions are needed during training, the metrics can even be non-differentiable. In this study, we propose a MetricGAN+ in which three training techniques incorporating domain-knowledge of speech processing are proposed. With these techniques, experimental results on the VoiceBank-DEMAND dataset show that MetricGAN+ can increase PESQ score by 0.3 compared to the previous MetricGAN and achieve state-of-the-art results (PESQ score = 3.15).
Acquiring Pronunciation Knowledge from Transcribed Speech Audio via Multi-task Learning
Recent work has shown the feasibility and benefit of bootstrapping an integrated sequence-to-sequence (Seq2Seq) linguistic frontend from a traditional pipeline-based frontend for text-to-speech (TTS). To overcome the fixed lexical coverage of bootstrapping training data, previous work has proposed to leverage easily accessible transcribed speech audio as an additional training source for acquiring novel pronunciation knowledge for uncovered words, which relies on an auxiliary ASR model as part of a cumbersome implementation flow. In this work, we propose an alternative method to leverage transcribed speech audio as an additional training source, based on multi-task learning (MTL). Experiments show that, compared to a baseline Seq2Seq frontend, the proposed MTL-based method reduces PER from 2.5% to 1.6% for those word types covered exclusively in transcribed speech audio, achieving a similar performance to the previous method but with a much simpler implementation flow.
ASMDD: Arabic Speech Mispronunciation Detection Dataset
The largest dataset of Arabic speech mispronunciation detections in Egyptian dialogues is introduced. The dataset is composed of annotated audio files representing the top 100 words that are most frequently used in the Arabic language, pronounced by 100 Egyptian children (aged between 2 and 8 years old). The dataset is collected and annotated on segmental pronunciation error detections by expert listeners.
Disentangled Phonetic Representation for Chinese Spelling Correction
Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information.
ESB: A Benchmark For Multi-Domain End-to-End Speech Recognition
Speech recognition applications cover a range of different audio and text distributions, with different speaking styles, background noise, transcription punctuation and character casing. However, many speech recognition systems require dataset-specific tuning (audio filtering, punctuation removal and normalisation of casing), therefore assuming a-priori knowledge of both the audio and text distributions. This tuning requirement can lead to systems failing to generalise to other datasets and domains. To promote the development of multi-domain speech systems, we introduce the End-to-end Speech Benchmark (ESB) for evaluating the performance of a single automatic speech recognition (ASR) system across a broad set of speech datasets. Benchmarked systems must use the same data pre- and post-processing algorithm across datasets - assuming the audio and text data distributions are a-priori unknown. We compare a series of state-of-the-art (SoTA) end-to-end (E2E) systems on this benchmark, demonstrating how a single speech system can be applied and evaluated on a wide range of data distributions. We find E2E systems to be effective across datasets: in a fair comparison, E2E systems achieve within 2.6% of SoTA systems tuned to a specific dataset. Our analysis reveals that transcription artefacts, such as punctuation and casing, pose difficulties for ASR systems and should be included in evaluation. We believe E2E benchmarking over a range of datasets promotes the research of multi-domain speech recognition systems. ESB is available at https://huggingface.co/esb.
MTalk-Bench: Evaluating Speech-to-Speech Models in Multi-Turn Dialogues via Arena-style and Rubrics Protocols
The rapid advancement of speech-to-speech (S2S) large language models (LLMs) has significantly improved real-time spoken interaction. However, current evaluation frameworks remain inadequate for assessing performance in complex, multi-turn dialogues. To address this, we introduce MTalk-Bench, a multi-turn S2S benchmark covering three core dimensions: Semantic Information, Paralinguistic Information, and Ambient Sound. Each dimension includes nine realistic scenarios, along with targeted tasks to assess specific capabilities such as reasoning. Our dual-method evaluation framework combines Arena-style evaluation (pairwise comparison) and Rubrics-based evaluation (absolute scoring) for relative and absolute assessment. The benchmark includes both model and human outputs, evaluated by human evaluators and LLMs. Experimental results reveal two sets of findings. Overall performance of S2S LLMs: (1) models excel at semantic information processing yet underperform on paralinguistic information and ambient sounds perception; (2) models typically regain coherence by increasing response length, sacrificing efficiency in multi-turn dialogues; (3) modality-aware, task-specific designs outperform brute scaling. Evaluation framework and reliability: (1) Arena and Rubrics yield consistent, complementary rankings, but reliable distinctions emerge only when performance gaps are large; (2) LLM-as-a-judge aligns with humans when gaps are clear or criteria explicit, but exhibits position and length biases and is reliable on nonverbal evaluation only with text annotations. These results highlight current limitations in S2S evaluation and the need for more robust, speech-aware assessment frameworks.
Trends, Limitations and Open Challenges in Automatic Readability Assessment Research
Readability assessment is the task of evaluating the reading difficulty of a given piece of text. Although research on computational approaches to readability assessment is now two decades old, there is not much work on synthesizing this research. This article is a brief survey of contemporary research on developing computational models for readability assessment. We identify the common approaches, discuss their shortcomings, and identify some challenges for the future. Where possible, we also connect computational research with insights from related work in other disciplines such as education and psychology.
Mind the Gap: A Closer Look at Tokenization for Multiple-Choice Question Answering with LLMs
When evaluating large language models (LLMs) with multiple-choice question answering (MCQA), it is common to end the prompt with the string "Answer:" to facilitate automated answer extraction via next-token probabilities. However, there is no consensus on how to tokenize the space following the colon, often overlooked as a trivial choice. In this paper, we uncover accuracy differences of up to 11% due to this (seemingly irrelevant) tokenization variation as well as reshuffled model rankings, raising concerns about the reliability of LLM comparisons in prior work. Surprisingly, we are able to recommend one specific strategy -- tokenizing the space together with the answer letter -- as we observe consistent and statistically significant performance improvements. Additionally, it improves model calibration, enhancing the reliability of the model's confidence estimates. Our findings underscore the importance of careful evaluation design and highlight the need for standardized, transparent evaluation protocols to ensure reliable and comparable results.
Data-Balanced Curriculum Learning for Audio Question Answering
Audio question answering (AQA) requires models to understand acoustic content and perform complex reasoning. Current models struggle with dataset imbalances and unstable training dynamics. This work combines curriculum learning with statistical data balancing to address these challenges. The method labels question difficulty using language models, then trains progressively from easy to hard examples. Statistical filtering removes overrepresented audio categories, and guided decoding constrains outputs to valid multiple-choice formats. Experiments on the DCASE 2025 training set and five additional public datasets show that data curation improves accuracy by 11.7% over baseline models, achieving 64.2% on the DCASE 2025 benchmark.
Mispronunciation Detection of Basic Quranic Recitation Rules using Deep Learning
In Islam, readers must apply a set of pronunciation rules called Tajweed rules to recite the Quran in the same way that the angel Jibrael taught the Prophet, Muhammad. The traditional process of learning the correct application of these rules requires a human who must have a license and great experience to detect mispronunciation. Due to the increasing number of Muslims around the world, the number of Tajweed teachers is not enough nowadays for daily recitation practice for every Muslim. Therefore, lots of work has been done for automatic Tajweed rules' mispronunciation detection to help readers recite Quran correctly in an easier way and shorter time than traditional learning ways. All previous works have three common problems. First, most of them focused on machine learning algorithms only. Second, they used private datasets with no benchmark to compare with. Third, they did not take into consideration the sequence of input data optimally, although the speech signal is time series. To overcome these problems, we proposed a solution that consists of Mel-Frequency Cepstral Coefficient (MFCC) features with Long Short-Term Memory (LSTM) neural networks which use the time series, to detect mispronunciation in Tajweed rules. In addition, our experiments were performed on a public dataset, the QDAT dataset, which contains more than 1500 voices of the correct and incorrect recitation of three Tajweed rules (Separate stretching , Tight Noon , and Hide ). To the best of our knowledge, the QDAT dataset has not been used by any research paper yet. We compared the performance of the proposed LSTM model with traditional machine learning algorithms used in SoTA. The LSTM model with time series showed clear superiority over traditional machine learning. The accuracy achieved by LSTM on the QDAT dataset was 96%, 95%, and 96% for the three rules (Separate stretching, Tight Noon, and Hide), respectively.
Evaluating Speech-to-Text x LLM x Text-to-Speech Combinations for AI Interview Systems
Voice-based conversational AI systems increasingly rely on cascaded architectures that combine speech-to-text (STT), large language models (LLMs), and text-to-speech (TTS) components. We present a large-scale empirical comparison of STT x LLM x TTS stacks using data sampled from over 300,000 AI-conducted job interviews. We used an LLM-as-a-Judge automated evaluation framework to assess conversational quality, technical accuracy, and skill assessment capabilities. Our analysis of five production configurations reveals that a stack combining Google's STT, GPT-4.1, and Cartesia's TTS outperforms alternatives in both objective quality metrics and user satisfaction scores. Surprisingly, we find that objective quality metrics correlate weakly with user satisfaction scores, suggesting that user experience in voice-based AI systems depends on factors beyond technical performance. Our findings provide practical guidance for selecting components in multimodal conversations and contribute a validated evaluation methodology for human-AI interactions.
Modeling of learning curves with applications to pos tagging
An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations.
L1-aware Multilingual Mispronunciation Detection Framework
The phonological discrepancies between a speaker's native (L1) and the non-native language (L2) serves as a major factor for mispronunciation. This paper introduces a novel multilingual MDD architecture, L1-MultiMDD, enriched with L1-aware speech representation. An end-to-end speech encoder is trained on the input signal and its corresponding reference phoneme sequence. First, an attention mechanism is deployed to align the input audio with the reference phoneme sequence. Afterwards, the L1-L2-speech embedding are extracted from an auxiliary model, pretrained in a multi-task setup identifying L1 and L2 language, and are infused with the primary network. Finally, the L1-MultiMDD is then optimized for a unified multilingual phoneme recognition task using connectionist temporal classification (CTC) loss for the target languages: English, Arabic, and Mandarin. Our experiments demonstrate the effectiveness of the proposed L1-MultiMDD framework on both seen -- L2-ARTIC, LATIC, and AraVoiceL2v2; and unseen -- EpaDB and Speechocean762 datasets. The consistent gains in PER, and false rejection rate (FRR) across all target languages confirm our approach's robustness, efficacy, and generalizability.
Dealing with training and test segmentation mismatch: FBK@IWSLT2021
This paper describes FBK's system submission to the IWSLT 2021 Offline Speech Translation task. We participated with a direct model, which is a Transformer-based architecture trained to translate English speech audio data into German texts. The training pipeline is characterized by knowledge distillation and a two-step fine-tuning procedure. Both knowledge distillation and the first fine-tuning step are carried out on manually segmented real and synthetic data, the latter being generated with an MT system trained on the available corpora. Differently, the second fine-tuning step is carried out on a random segmentation of the MuST-C v2 En-De dataset. Its main goal is to reduce the performance drops occurring when a speech translation model trained on manually segmented data (i.e. an ideal, sentence-like segmentation) is evaluated on automatically segmented audio (i.e. actual, more realistic testing conditions). For the same purpose, a custom hybrid segmentation procedure that accounts for both audio content (pauses) and for the length of the produced segments is applied to the test data before passing them to the system. At inference time, we compared this procedure with a baseline segmentation method based on Voice Activity Detection (VAD). Our results indicate the effectiveness of the proposed hybrid approach, shown by a reduction of the gap with manual segmentation from 8.3 to 1.4 BLEU points.
Comparing phonemes and visemes with DNN-based lipreading
There is debate if phoneme or viseme units are the most effective for a lipreading system. Some studies use phoneme units even though phonemes describe unique short sounds; other studies tried to improve lipreading accuracy by focusing on visemes with varying results. We compare the performance of a lipreading system by modeling visual speech using either 13 viseme or 38 phoneme units. We report the accuracy of our system at both word and unit levels. The evaluation task is large vocabulary continuous speech using the TCD-TIMIT corpus. We complete our visual speech modeling via hybrid DNN-HMMs and our visual speech decoder is a Weighted Finite-State Transducer (WFST). We use DCT and Eigenlips as a representation of mouth ROI image. The phoneme lipreading system word accuracy outperforms the viseme based system word accuracy. However, the phoneme system achieved lower accuracy at the unit level which shows the importance of the dictionary for decoding classification outputs into words.
SingMOS: An extensive Open-Source Singing Voice Dataset for MOS Prediction
In speech generation tasks, human subjective ratings, usually referred to as the opinion score, are considered the "gold standard" for speech quality evaluation, with the mean opinion score (MOS) serving as the primary evaluation metric. Due to the high cost of human annotation, several MOS prediction systems have emerged in the speech domain, demonstrating good performance. These MOS prediction models are trained using annotations from previous speech-related challenges. However, compared to the speech domain, the singing domain faces data scarcity and stricter copyright protections, leading to a lack of high-quality MOS-annotated datasets for singing. To address this, we propose SingMOS, a high-quality and diverse MOS dataset for singing, covering a range of Chinese and Japanese datasets. These synthesized vocals are generated using state-of-the-art models in singing synthesis, conversion, or resynthesis tasks and are rated by professional annotators alongside real vocals. Data analysis demonstrates the diversity and reliability of our dataset. Additionally, we conduct further exploration on SingMOS, providing insights for singing MOS prediction and guidance for the continued expansion of SingMOS.
Opencpop: A High-Quality Open Source Chinese Popular Song Corpus for Singing Voice Synthesis
This paper introduces Opencpop, a publicly available high-quality Mandarin singing corpus designed for singing voice synthesis (SVS). The corpus consists of 100 popular Mandarin songs performed by a female professional singer. Audio files are recorded with studio quality at a sampling rate of 44,100 Hz and the corresponding lyrics and musical scores are provided. All singing recordings have been phonetically annotated with phoneme boundaries and syllable (note) boundaries. To demonstrate the reliability of the released data and to provide a baseline for future research, we built baseline deep neural network-based SVS models and evaluated them with both objective metrics and subjective mean opinion score (MOS) measure. Experimental results show that the best SVS model trained on our database achieves 3.70 MOS, indicating the reliability of the provided corpus. Opencpop is released to the open-source community WeNet, and the corpus, as well as synthesized demos, can be found on the project homepage.
Project MOSLA: Recording Every Moment of Second Language Acquisition
Second language acquisition (SLA) is a complex and dynamic process. Many SLA studies that have attempted to record and analyze this process have typically focused on a single modality (e.g., textual output of learners), covered only a short period of time, and/or lacked control (e.g., failed to capture every aspect of the learning process). In Project MOSLA (Moments of Second Language Acquisition), we have created a longitudinal, multimodal, multilingual, and controlled dataset by inviting participants to learn one of three target languages (Arabic, Spanish, and Chinese) from scratch over a span of two years, exclusively through online instruction, and recording every lesson using Zoom. The dataset is semi-automatically annotated with speaker/language IDs and transcripts by both human annotators and fine-tuned state-of-the-art speech models. Our experiments reveal linguistic insights into learners' proficiency development over time, as well as the potential for automatically detecting the areas of focus on the screen purely from the unannotated multimodal data. Our dataset is freely available for research purposes and can serve as a valuable resource for a wide range of applications, including but not limited to SLA, proficiency assessment, language and speech processing, pedagogy, and multimodal learning analytics.
Holmes: Benchmark the Linguistic Competence of Language Models
We introduce Holmes, a benchmark to assess the linguistic competence of language models (LMs) - their ability to grasp linguistic phenomena. Unlike prior prompting-based evaluations, Holmes assesses the linguistic competence of LMs via their internal representations using classifier-based probing. In doing so, we disentangle specific phenomena (e.g., part-of-speech of words) from other cognitive abilities, like following textual instructions, and meet recent calls to assess LMs' linguistic competence in isolation. Composing Holmes, we review over 250 probing studies and feature more than 200 datasets to assess syntax, morphology, semantics, reasoning, and discourse phenomena. Analyzing over 50 LMs reveals that, aligned with known trends, their linguistic competence correlates with model size. However, surprisingly, model architecture and instruction tuning also significantly influence performance, particularly in morphology and syntax. Finally, we propose FlashHolmes, a streamlined version of Holmes designed to lower the high computation load while maintaining high-ranking precision.
A Language Modeling Approach to Diacritic-Free Hebrew TTS
We tackle the task of text-to-speech (TTS) in Hebrew. Traditional Hebrew contains Diacritics, which dictate the way individuals should pronounce given words, however, modern Hebrew rarely uses them. The lack of diacritics in modern Hebrew results in readers expected to conclude the correct pronunciation and understand which phonemes to use based on the context. This imposes a fundamental challenge on TTS systems to accurately map between text-to-speech. In this work, we propose to adopt a language modeling Diacritics-Free approach, for the task of Hebrew TTS. The model operates on discrete speech representations and is conditioned on a word-piece tokenizer. We optimize the proposed method using in-the-wild weakly supervised data and compare it to several diacritic-based TTS systems. Results suggest the proposed method is superior to the evaluated baselines considering both content preservation and naturalness of the generated speech. Samples can be found under the following link: pages.cs.huji.ac.il/adiyoss-lab/HebTTS/
Speech Recognition Challenge in the Wild: Arabic MGB-3
This paper describes the Arabic MGB-3 Challenge - Arabic Speech Recognition in the Wild. Unlike last year's Arabic MGB-2 Challenge, for which the recognition task was based on more than 1,200 hours broadcast TV news recordings from Aljazeera Arabic TV programs, MGB-3 emphasises dialectal Arabic using a multi-genre collection of Egyptian YouTube videos. Seven genres were used for the data collection: comedy, cooking, family/kids, fashion, drama, sports, and science (TEDx). A total of 16 hours of videos, split evenly across the different genres, were divided into adaptation, development and evaluation data sets. The Arabic MGB-Challenge comprised two tasks: A) Speech transcription, evaluated on the MGB-3 test set, along with the 10 hour MGB-2 test set to report progress on the MGB-2 evaluation; B) Arabic dialect identification, introduced this year in order to distinguish between four major Arabic dialects - Egyptian, Levantine, North African, Gulf, as well as Modern Standard Arabic. Two hours of audio per dialect were released for development and a further two hours were used for evaluation. For dialect identification, both lexical features and i-vector bottleneck features were shared with participants in addition to the raw audio recordings. Overall, thirteen teams submitted ten systems to the challenge. We outline the approaches adopted in each system, and summarise the evaluation results.
Towards cross-language prosody transfer for dialog
Speech-to-speech translation systems today do not adequately support use for dialog purposes. In particular, nuances of speaker intent and stance can be lost due to improper prosody transfer. We present an exploration of what needs to be done to overcome this. First, we developed a data collection protocol in which bilingual speakers re-enact utterances from an earlier conversation in their other language, and used this to collect an English-Spanish corpus, so far comprising 1871 matched utterance pairs. Second, we developed a simple prosodic dissimilarity metric based on Euclidean distance over a broad set of prosodic features. We then used these to investigate cross-language prosodic differences, measure the likely utility of three simple baseline models, and identify phenomena which will require more powerful modeling. Our findings should inform future research on cross-language prosody and the design of speech-to-speech translation systems capable of effective prosody transfer.
Audio-Aware Large Language Models as Judges for Speaking Styles
Audio-aware large language models (ALLMs) can understand the textual and non-textual information in the audio input. In this paper, we explore using ALLMs as an automatic judge to assess the speaking styles of speeches. We use ALLM judges to evaluate the speeches generated by SLMs on two tasks: voice style instruction following and role-playing. The speaking style we consider includes emotion, volume, speaking pace, word emphasis, pitch control, and non-verbal elements. We use four spoken language models (SLMs) to complete the two tasks and use humans and ALLMs to judge the SLMs' responses. We compare two ALLM judges, GPT-4o-audio and Gemini-2.5-pro, with human evaluation results and show that the agreement between Gemini and human judges is comparable to the agreement between human evaluators. These promising results show that ALLMs can be used as a judge to evaluate SLMs. Our results also reveal that current SLMs, even GPT-4o-audio, still have room for improvement in controlling the speaking style and generating natural dialogues.
Polish Read Speech Corpus for Speech Tools and Services
This paper describes the speech processing activities conducted at the Polish consortium of the CLARIN project. The purpose of this segment of the project was to develop specific tools that would allow for automatic and semi-automatic processing of large quantities of acoustic speech data. The tools include the following: grapheme-to-phoneme conversion, speech-to-text alignment, voice activity detection, speaker diarization, keyword spotting and automatic speech transcription. Furthermore, in order to develop these tools, a large high-quality studio speech corpus was recorded and released under an open license, to encourage development in the area of Polish speech research. Another purpose of the corpus was to serve as a reference for studies in phonetics and pronunciation. All the tools and resources were released on the the Polish CLARIN website. This paper discusses the current status and future plans for the project.
Synthetic Voice Data for Automatic Speech Recognition in African Languages
Speech technology remains out of reach for most of the over 2300 languages in Africa. We present the first systematic assessment of large-scale synthetic voice corpora for African ASR. We apply a three-step process: LLM-driven text creation, TTS voice synthesis, and ASR fine-tuning. Eight out of ten languages for which we create synthetic text achieved readability scores above 5 out of 7. We evaluated ASR improvement for three (Hausa, Dholuo, Chichewa) and created more than 2,500 hours of synthetic voice data at below 1% of the cost of real data. Fine-tuned Wav2Vec-BERT-2.0 models trained on 250h real and 250h synthetic Hausa matched a 500h real-data-only baseline, while 579h real and 450h to 993h synthetic data created the best performance. We also present gender-disaggregated ASR performance evaluation. For very low-resource languages, gains varied: Chichewa WER improved about 6.5% relative with a 1:2 real-to-synthetic ratio; a 1:1 ratio for Dholuo showed similar improvements on some evaluation data, but not on others. Investigating intercoder reliability, ASR errors and evaluation datasets revealed the need for more robust reviewer protocols and more accurate evaluation data. All data and models are publicly released to invite further work to improve synthetic data for African languages.
NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality
Text to speech (TTS) has made rapid progress in both academia and industry in recent years. Some questions naturally arise that whether a TTS system can achieve human-level quality, how to define/judge that quality and how to achieve it. In this paper, we answer these questions by first defining the human-level quality based on the statistical significance of subjective measure and introducing appropriate guidelines to judge it, and then developing a TTS system called NaturalSpeech that achieves human-level quality on a benchmark dataset. Specifically, we leverage a variational autoencoder (VAE) for end-to-end text to waveform generation, with several key modules to enhance the capacity of the prior from text and reduce the complexity of the posterior from speech, including phoneme pre-training, differentiable duration modeling, bidirectional prior/posterior modeling, and a memory mechanism in VAE. Experiment evaluations on popular LJSpeech dataset show that our proposed NaturalSpeech achieves -0.01 CMOS (comparative mean opinion score) to human recordings at the sentence level, with Wilcoxon signed rank test at p-level p >> 0.05, which demonstrates no statistically significant difference from human recordings for the first time on this dataset.
Benchmarking Open-ended Audio Dialogue Understanding for Large Audio-Language Models
Large Audio-Language Models (LALMs) have unclocked audio dialogue capabilities, where audio dialogues are a direct exchange of spoken language between LALMs and humans. Recent advances, such as GPT-4o, have enabled LALMs in back-and-forth audio dialogues with humans. This progression not only underscores the potential of LALMs but also broadens their applicability across a wide range of practical scenarios supported by audio dialogues. However, given these advancements, a comprehensive benchmark to evaluate the performance of LALMs in the open-ended audio dialogue understanding remains absent currently. To address this gap, we propose an Audio Dialogue Understanding Benchmark (ADU-Bench), which consists of 4 benchmark datasets. They assess the open-ended audio dialogue ability for LALMs in 3 general scenarios, 12 skills, 9 multilingual languages, and 4 categories of ambiguity handling. Notably, we firstly propose the evaluation of ambiguity handling in audio dialogues that expresses different intentions beyond the same literal meaning of sentences, e.g., "Really!?" with different intonations. In summary, ADU-Bench includes over 20,000 open-ended audio dialogues for the assessment of LALMs. Through extensive experiments conducted on 13 LALMs, our analysis reveals that there is still considerable room for improvement in the audio dialogue understanding abilities of existing LALMs. In particular, they struggle with mathematical symbols and formulas, understanding human behavior such as roleplay, comprehending multiple languages, and handling audio dialogue ambiguities from different phonetic elements, such as intonations, pause positions, and homophones.
URO-Bench: A Comprehensive Benchmark for End-to-End Spoken Dialogue Models
In recent years, with advances in large language models (LLMs), end-to-end spoken dialogue models (SDMs) have made significant strides. Compared to text-based LLMs, the evaluation of SDMs needs to take speech-related aspects into account, such as paralinguistic information and speech quality. However, there is still a lack of comprehensive evaluations for SDMs in speech-to-speech (S2S) scenarios. To address this gap, we propose URO-Bench, an extensive benchmark for SDMs. Notably, URO-Bench is the first S2S benchmark that covers evaluations about multilingualism, multi-round dialogues, and paralinguistics. Our benchmark is divided into two difficulty levels: basic track and pro track, consisting of 16 and 20 datasets respectively, evaluating the model's abilities in Understanding, Reasoning, and Oral conversation. Evaluations on our proposed benchmark reveal that current open-source SDMs perform rather well in daily QA tasks, but lag behind their backbone LLMs in terms of instruction-following ability and also suffer from catastrophic forgetting. Their performance in advanced evaluations of paralinguistic information and audio understanding remains subpar, highlighting the need for further research in this direction. We hope that URO-Bench can effectively facilitate the development of spoken dialogue models by providing a multifaceted evaluation of existing models and helping to track progress in this area.
Do LLMs Know When to NOT Answer? Investigating Abstention Abilities of Large Language Models
Abstention Ability (AA) is a critical aspect of Large Language Model (LLM) reliability, referring to an LLM's capability to withhold responses when uncertain or lacking a definitive answer, without compromising performance. Although previous studies have attempted to improve AA, they lack a standardised evaluation method and remain unsuitable for black-box models where token prediction probabilities are inaccessible. This makes comparative analysis challenging, especially for state-of-the-art closed-source commercial LLMs. This paper bridges this gap by introducing a black-box evaluation approach and a new dataset, Abstain-QA, crafted to rigorously assess AA across varied question types (answerable and unanswerable), domains (well-represented and under-represented), and task types (fact centric and reasoning). We also propose a new confusion matrix, the ''Answerable-Unanswerable Confusion Matrix'' (AUCM) which serves as the basis for evaluating AA, by offering a structured and precise approach for assessment. Finally, we explore the impact of three prompting strategies-Strict Prompting, Verbal Confidence Thresholding, and Chain-of-Thought (CoT)-on improving AA. Our results indicate that even powerful models like GPT-4, Mixtral 8x22b encounter difficulties with abstention; however, strategic approaches such as Strict prompting and CoT can enhance this capability.
A Suite for Acoustic Language Model Evaluation
Speech language models have recently demonstrated great potential as universal speech processing systems. Such models have the ability to model the rich acoustic information existing in audio signals, beyond spoken content, such as emotion, background noise, etc. Despite this, evaluation benchmarks which evaluate awareness to a wide range of acoustic aspects, are lacking. To help bridge this gap, we introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response. The proposed benchmarks both evaluate the consistency of the inspected element and how much it matches the spoken text. We follow a modelling based approach, measuring whether a model gives correct samples higher scores than incorrect ones. This approach makes the benchmark fast to compute even for large models. We evaluated several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method. Code and data are publicly available at https://pages.cs.huji.ac.il/adiyoss-lab/salmon/ .
The Interspeech 2025 Speech Accessibility Project Challenge
While the last decade has witnessed significant advancements in Automatic Speech Recognition (ASR) systems, performance of these systems for individuals with speech disabilities remains inadequate, partly due to limited public training data. To bridge this gap, the 2025 Interspeech Speech Accessibility Project (SAP) Challenge was launched, utilizing over 400 hours of SAP data collected and transcribed from more than 500 individuals with diverse speech disabilities. Hosted on EvalAI and leveraging the remote evaluation pipeline, the SAP Challenge evaluates submissions based on Word Error Rate and Semantic Score. Consequently, 12 out of 22 valid teams outperformed the whisper-large-v2 baseline in terms of WER, while 17 teams surpassed the baseline on SemScore. Notably, the top team achieved the lowest WER of 8.11\%, and the highest SemScore of 88.44\% at the same time, setting new benchmarks for future ASR systems in recognizing impaired speech.
VoxHakka: A Dialectally Diverse Multi-speaker Text-to-Speech System for Taiwanese Hakka
This paper introduces VoxHakka, a text-to-speech (TTS) system designed for Taiwanese Hakka, a critically under-resourced language spoken in Taiwan. Leveraging the YourTTS framework, VoxHakka achieves high naturalness and accuracy and low real-time factor in speech synthesis while supporting six distinct Hakka dialects. This is achieved by training the model with dialect-specific data, allowing for the generation of speaker-aware Hakka speech. To address the scarcity of publicly available Hakka speech corpora, we employed a cost-effective approach utilizing a web scraping pipeline coupled with automatic speech recognition (ASR)-based data cleaning techniques. This process ensured the acquisition of a high-quality, multi-speaker, multi-dialect dataset suitable for TTS training. Subjective listening tests conducted using comparative mean opinion scores (CMOS) demonstrate that VoxHakka significantly outperforms existing publicly available Hakka TTS systems in terms of pronunciation accuracy, tone correctness, and overall naturalness. This work represents a significant advancement in Hakka language technology and provides a valuable resource for language preservation and revitalization efforts.
On the Robustness of Arabic Speech Dialect Identification
Arabic dialect identification (ADI) tools are an important part of the large-scale data collection pipelines necessary for training speech recognition models. As these pipelines require application of ADI tools to potentially out-of-domain data, we aim to investigate how vulnerable the tools may be to this domain shift. With self-supervised learning (SSL) models as a starting point, we evaluate transfer learning and direct classification from SSL features. We undertake our evaluation under rich conditions, with a goal to develop ADI systems from pretrained models and ultimately evaluate performance on newly collected data. In order to understand what factors contribute to model decisions, we carry out a careful human study of a subset of our data. Our analysis confirms that domain shift is a major challenge for ADI models. We also find that while self-training does alleviate this challenges, it may be insufficient for realistic conditions.
PARIKSHA : A Large-Scale Investigation of Human-LLM Evaluator Agreement on Multilingual and Multi-Cultural Data
Evaluation of multilingual Large Language Models (LLMs) is challenging due to a variety of factors -- the lack of benchmarks with sufficient linguistic diversity, contamination of popular benchmarks into LLM pre-training data and the lack of local, cultural nuances in translated benchmarks. In this work, we study human and LLM-based evaluation in a multilingual, multi-cultural setting. We evaluate 30 models across 10 Indic languages by conducting 90K human evaluations and 30K LLM-based evaluations and find that models such as GPT-4o and Llama-3 70B consistently perform best for most Indic languages. We build leaderboards for two evaluation settings - pairwise comparison and direct assessment and analyse the agreement between humans and LLMs. We find that humans and LLMs agree fairly well in the pairwise setting but the agreement drops for direct assessment evaluation especially for languages such as Bengali and Odia. We also check for various biases in human and LLM-based evaluation and find evidence of self-bias in the GPT-based evaluator. Our work presents a significant step towards scaling up multilingual evaluation of LLMs.
Spaiche: Extending State-of-the-Art ASR Models to Swiss German Dialects
Recent breakthroughs in NLP largely increased the presence of ASR systems in our daily lives. However, for many low-resource languages, ASR models still need to be improved due in part to the difficulty of acquiring pertinent data. This project aims to help advance research in ASR models for Swiss German dialects, by providing insights about the performance of state-of-the-art ASR models on recently published Swiss German speech datasets. We propose a novel loss that takes into account the semantic distance between the predicted and the ground-truth labels. We outperform current state-of-the-art results by fine-tuning OpenAI's Whisper model on Swiss-German datasets.
On Monotonic Aggregation for Open-domain QA
Question answering (QA) is a critical task for speech-based retrieval from knowledge sources, by sifting only the answers without requiring to read supporting documents. Specifically, open-domain QA aims to answer user questions on unrestricted knowledge sources. Ideally, adding a source should not decrease the accuracy, but we find this property (denoted as "monotonicity") does not hold for current state-of-the-art methods. We identify the cause, and based on that we propose Judge-Specialist framework. Our framework consists of (1) specialist retrievers/readers to cover individual sources, and (2) judge, a dedicated language model to select the final answer. Our experiments show that our framework not only ensures monotonicity, but also outperforms state-of-the-art multi-source QA methods on Natural Questions. Additionally, we show that our models robustly preserve the monotonicity against noise from speech recognition. We publicly release our code and setting.
AHELM: A Holistic Evaluation of Audio-Language Models
Evaluations of audio-language models (ALMs) -- multimodal models that take interleaved audio and text as input and output text -- are hindered by the lack of standardized benchmarks; most benchmarks measure only one or two capabilities and omit evaluative aspects such as fairness or safety. Furthermore, comparison across models is difficult as separate evaluations test a limited number of models and use different prompting methods and inference parameters. To address these shortfalls, we introduce AHELM, a benchmark that aggregates various datasets -- including 2 new synthetic audio-text datasets called PARADE, which evaluates the ALMs on avoiding stereotypes, and CoRe-Bench, which measures reasoning over conversational audio through inferential multi-turn question answering -- to holistically measure the performance of ALMs across 10 aspects we have identified as important to the development and usage of ALMs: audio perception, knowledge, reasoning, emotion detection, bias, fairness, multilinguality, robustness, toxicity, and safety. We also standardize the prompts, inference parameters, and evaluation metrics to ensure equitable comparisons across models. We test 14 open-weight and closed-API ALMs from 3 developers and 3 additional simple baseline systems each consisting of an automatic speech recognizer and a language model. Our results show that while Gemini 2.5 Pro ranks top in 5 out of 10 aspects, it exhibits group unfairness (p=0.01) on ASR tasks whereas most of the other models do not. We also find that the baseline systems perform reasonably well on AHELM, with one ranking 5th overall despite having only speech-to-text capabilities. For transparency, all raw prompts, model generations, and outputs are available on our website at https://crfm.stanford.edu/helm/audio/v1.0.0. AHELM is intended to be a living benchmark and new datasets and models will be added over time.
